Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 11: 1036478, 2023.
Article in English | MEDLINE | ID: mdl-36936530

ABSTRACT

Introduction: Cadmium(Cd) an industrial poison present abundantly in the environment, causes human toxicity by an inflammatory process. Chronic exposure of cadmium can cause a number of molecular lesions that could be relevant to oncogenesis, through indirect or epigenetic mechanisms, potentially including abnormal activation of oncogenes and suppression of apoptosis by depletion of antioxidants. As induction of cyclooxygenase (COX)-2 is linked to inflammatory processes, use of luteolin, epiafzelechin, and albigenin alone or in different combinations may be used as anti-inflammatory therapeutic agents. Methods: We, herein, performed in silico experiments to check the binding affinity of phytochemicals and their therapeutic effect against COX-2 in cadmium administered rats. Wistar albino rats were given phytochemicals in different combinations to check their anti-inflammatory activities against cadmium intoxication. The level of alanine aminotransferases (ALT), 4-hydroxynonenal (4HNE), 8-hydroxy-2-deoxyguanosine (8-OHdG), tumor necrosis factor-alpha (TNF-α), isoprostanes (IsoP-2α), COX-2, and malondialdehyde (MDA) were estimated with their respective ELISA and spectrophotometric methods. Results: The generated results show that phytocompounds possessed good binding energy potential against COX-2, and common interactive behavior was observed in all docking studies. Moreover, the level of ALT, 4HNE, 8-OHdG, TNF-α, IsoP-2α, malondialdehyde, and COX-2 were significantly increased in rats with induced toxicity compared to the control group, whereas in combinational therapy of phytocompounds, the levels were significantly decreased in the group. Discussion: Taken together, luteolin, epiafzelechin, and albigenin can be used as anti-inflammatory therapeutic agents for future novel drug design, and thus it may have therapeutic importance against cadmium toxicity.

2.
Front Pharmacol ; 13: 979300, 2022.
Article in English | MEDLINE | ID: mdl-36353481

ABSTRACT

Background: Diabetes mellitus leads to endothelial dysfunction and accumulation of oxygen radicals. Sulfasalazine-induced Nrf2 activation reduces oxidative stress in vessels. Thus, in the present study, we investigated the effects of sulfasalazine on endothelial dysfunction induced by high glucose. We also ascribed the underlying mechanism involved in glucose-induced endothelial dysfunction. Methods: For this experiment we used 80 Wistar Albino rats thoracic aorta to calculate the dose response curve of noradrenaline and acetylcholine. Vessels were incubated in normal and high glucose for 2 h. To investigate glucose and sulfasalazine effects the vessels of the high glucose group were pre-treated with sulfasalazine (300 mM), JNK inhibitor (SP600125), and ERK inhibitor (U0126) for 30 min. The dose response curve was calculated through organ bath. The eNOS, TAS, TOS, and HO-1 levels were estimated by commercially available ELISA kits. Results: In the high glucose group, the Emax for contraction was significantly higher (p < 0.001), and Emax for relaxation was lower than that of control. These functional changes were parallel with the low levels of eNOS (p < 0.05). High glucose vessel treated with sulfasalazine showed low Emax value for contraction (p < 0.001) however, the Emax for relaxation was significantly high (p < 0.001) when compared to high glucose group. In the JNK group, Emax for contraction and relaxation was inhibited (p < 0.001) compared to sulfasalazine treated vessels. HO-1 enzyme levels were significantly low (p < 0.01) with sulfasalazine but higher with ERK inhibitor (p < 0.05). Conclusion: High glucose induced endothelial dysfunction and sulfasalazine reduced damage in high glucose vessels by activating eNOS, antioxidant effect through HO-1 enzymes and particularly inducing Nrf2 via the ERK and JNK pathways.

3.
Front Behav Neurosci ; 16: 855241, 2022.
Article in English | MEDLINE | ID: mdl-35733518

ABSTRACT

The underlying mechanism of dependence and rewarding effects of morphine is imperative to understand. The primary aim of this study was to investigate whether ropinirole D2/3 agonist affects the rewarding and reinforcing properties of morphine-induced conditioned place preference (CPP) and withdrawal syndromes in rats. On day one, the animals were randomly divided to conduct the pre-test. The morphine (10 mg/kg, i.p.) and/or saline was administered on alternate days in an 8-day CPP session. On day 10, 15 min prior to the post-conditioning test (expression), a single dose of ropinirole (1, 2, and 5 mg/kg, i.p.) was given to rats. In extinction session, ropinirole was injected daily, and CPP was extinguished by repeated testing, with intervals of 3 days. Finally, reinstatement was assessed by administering ropinirole (1, 2, and 5 mg/kg) 15 min before the morphine injection. Morphine dependence was developed by administering increasing doses of morphine (10-50 mg/kg, i.p.). To assess withdrawal symptoms, ropinirole (1, 2, and 5 mg/kg) was injected 15 min before naloxone (2 mg/kg, s.c.) administration. The present study confirms that ropinirole attenuates expression and reinstatement of CPP, while it precipitates the extinction of morphine-induced CPP. Naloxone-precipitated morphine withdrawal symptoms, including wet dog shakes and weight loss, were attenuated although jumping was increased by a single ropinirole injection. Thus, ropinirole was influential in attenuating expression, reducing drug seeking and weakening reinstatement via the dopaminergic system. These findings show that ropinirole might affect neuro-adaptive changes related to dependence.

4.
Medicina (Kaunas) ; 58(2)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35208508

ABSTRACT

Background and Objectives: Chronic kidney disease (CKD) is usually linked with polypharmacy and patients are invariably at risk of complex medication regimens. The present study was designed to estimate the potential drug-drug interactions (pDDIs) through the prescription patterns provided to patients of the Nephrology Transplant Unit of Cerrahpasa Medical Faculty patients. Materials and Methods: 96 patients were included in the study. pDDIs among every combination of the prescribed drug were analyzed using the Thomson Reuters Micromedex. Results: We found 149 pDDIs making 2.16 interactions per prescription with incidence rates of 69.7%. Approximately 4.1% of interactions were of significant severity, 75.1% moderate severity, and 20.8% were classified as minor pDDIs. The most frequent interactions were found between iron and aluminum, calcium or magnesium-containing products (21.37%), calcium channel blockers and beta-blockers (8.96%); and aspirin and aluminum, calcium, or magnesium-containing products (7.58%). We identified 42 drug pairs with probability of clinical significance. The most commonly reported clinical outcomes of the pDDIs were hypo- or hypertension (39.24%), decreased drug efficacy (24.05%), and arrhythmia (9.49%). Aluminum, calcium, or magnesium-containing drug products (33.10%) constituted the primary class of drugs involved in interactions. Conclusions: This study showed pharmacodynamics (49%), pharmacokinetics (42.94%) interactions, polypharmacy and gender as determinant of pDDIs. A comprehensive multicenter research is required to decrease the morbidity and ease the state burden.


Subject(s)
Nephrology , Pharmaceutical Preparations , Renal Insufficiency, Chronic , Drug Interactions , Humans , Prevalence , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/epidemiology , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...