Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Eur J Neurol ; 28(8): 2804-2811, 2021 08.
Article in English | MEDLINE | ID: mdl-33949047

ABSTRACT

BACKGROUND AND PURPOSE: Crossing pathologies of the corticospinal tract (CST) are rare and often associated with genetic disorders. However, they can be present in healthy humans and lead to ipsilateral motor deficits when a lesion to motor areas occurs. Here, we review historical and current literature of CST crossing pathologies and present a rare case of asymmetric crossing of the CST. METHODS: Description of the case and systematic review of the literature were based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The PubMed database was searched for peer-reviewed articles in English since 1950. All articles on ipsilateral stroke, uncrossed CST, and associated neurologic disorders were screened. Furthermore, a literature review between the years 1850 and 1980 including articles in other languages, books, opinions, and case studies was conducted. RESULTS: Only a few descriptions of CST crossing pathologies exist in healthy humans, whereas they seem to be more common in genetic disorders such as horizontal gaze palsy with progressive scoliosis or congenital mirror movements. Our patient presented with aphasia and left-sided hemiparesis. Computed tomographic (CT) scan revealed a perfusion deficit in the left middle cerebral artery territory, which was confirmed by diffusion-weighted magnetic resonance imaging (MRI), so that thrombolysis was administered. Diffusion tensor imaging with fibre tracking revealed an asymmetric CST crossing. CONCLUSIONS: The knowledge of CST crossing pathologies is essential if a motor deficit occurs ipsilateral to the lesion side. An ipsilateral deficit should not lead to exclusion or delay of therapeutic options in patients with suspected stroke. Here, a combined evaluation of CT perfusion imaging and MRI diffusion imaging may be of advantage.


Subject(s)
Diffusion Tensor Imaging , Pyramidal Tracts , Diffusion Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging , Paresis , Pyramidal Tracts/diagnostic imaging
3.
Front Aging Neurosci ; 11: 249, 2019.
Article in English | MEDLINE | ID: mdl-31572166

ABSTRACT

Neurodegenerative parkinsonian syndromes comprise a number of disorders that are characterized by similar clinical features but are separated on the basis of different pathologies, i.e., aggregates of α-synuclein or tau protein. Due to the overlap of signs and symptoms a precise differentiation is often difficult, especially early in the disease course. Enormous efforts have been taken to develop tau-selective PET imaging agents, but strong off-target binding to monoamine oxidase B (MAO-B) has been observed across first generation ligands. Nonetheless, astrogliosis-related MAO-B elevation is a common histopathological known feature of all parkinsonian syndromes and might be itself an interesting imaging target. Therefore, this study aimed to investigate the performance of [18F]-THK5351, a combined MAO-B and tau tracer for differential diagnosis of parkinsonian syndromes. [18F]-THK5351 PET was performed in 34 patients: six with Parkinson's disease (PD), nine with multiple system atrophy with predominant parkinsonism (MSA-P), six with MSA with predominant cerebellar ataxia (MSA-C), and 13 with progressive supranuclear palsy (PSP) Richardson's syndrome. Volume-of-interest-based quantification of standardized-uptake-values was conducted in different parkinsonian syndrome-related target regions. PET results were subjected to multinomial logistic regression to create a prediction model discriminating among groups. Furthermore, we correlated tracer uptake with clinical findings. Elevated [18F]-THK5351 uptake in midbrain and diencephalon differentiated PSP patients from PD and MSA-C. MSA-C patients were distinguishable by high tracer uptake in the pons and cerebellar deep white matter when compared to PSP and PD patients, whereas MSA-P patients tended to show higher tracer uptake in the lentiform nucleus. A multinomial logistic regression classified 33/34 patients into the correct clinical diagnosis group. Tracer uptake in the pons, cerebellar deep white matter, and striatum was closely associated with the presence of cerebellar and parkinsonian symptoms of MSA patients. The current study demonstrates that combined MAO-B and tau binding of THK5351 facilitates differential diagnosis of parkinsonian syndromes. Furthermore, our data indicate a correlation of MSA phenotype with [18F]-THK5351 uptake in certain brain regions, illustrating their relevance for the emergence of clinical symptoms and underlining the potential of THK5351 PET as a biomarker that correlates with pathological changes as well as with disease stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...