Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 99(3): 761, 2018 03.
Article in English | MEDLINE | ID: mdl-29281144

ABSTRACT

Size, growth, and density have been studied for North American Pacific coast sea urchins Strongylocentrotus purpuratus, S. droebachiensis, S. polyacanthus, Mesocentrotus (Strongylocentrotus) franciscanus, Lytechinus pictus, Centrostephanus coronatus, and Arbacia stellata by various workers at diverse sites and for varying lengths of time from 1956 to present. Numerous peer-reviewed publications have used some of these data but some data have appeared only in graduate theses or the gray literature. There also are data that have never appeared outside original data sheets. Motivation for studies has included fisheries management and environmental monitoring of sewer and power plant outfalls as well as changes associated with disease epidemics. Studies also have focused on kelp restoration, community effects of sea otters, basic sea urchin biology, and monitoring. The data sets presented here are a historical record of size, density, and growth for a common group of marine invertebrates in intertidal and nearshore environments that can be used to test hypotheses concerning future changes associated with fisheries practices, shifts of predator distributions, climate and ecosystem changes, and ocean acidification along the Pacific Coast of North America and islands of the north Pacific. No copyright restrictions apply. Please credit this paper when using the data.

2.
Ecology ; 92(12): 2276-84, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22352167

ABSTRACT

In the Galápagos Islands, two eulimid snails parasitize the common pencil sea urchin, Eucidaris galapagensis. Past work in the Galápagos suggests that fishing reduces lobster and fish densities and, due to this relaxation of predation pressure, indirectly increases urchin densities, creating the potential for complex indirect interactions between fishing and parasitic snails. To measure indirect effects of fishing on these parasitic snails, we investigated the spatial relationships among urchins, parasitic snails, commensal crabs, and large urchin predators (hogfish and lobsters). Parasitic snails had higher densities at sites where urchins were abundant, probably due to increased resource availability. Commensal crabs that shelter under urchin spines, particularly the endemic Mithrax nodosus, preyed on the parasitic snails in aquaria, and snails were less abundant at field sites where these crabs were common. In aquaria, hogfish and lobsters readily ate crabs, but crabs were protected from predation under urchin spines, leading to a facultative mutualism between commensal crabs and urchins. In the field, fishing appeared to indirectly increase the abundance of urchins and their commensal crabs by reducing predation pressure from fish and lobsters. Fished sites had fewer snails per urchin, probably due to increased predation from commensal crabs. However, because fished sites also tended to have more urchins, there was no significant net effect of fishing on the number of snails per square meter. These results suggest that fishing can have complex indirect effects on parasites by altering food webs.


Subject(s)
Decapoda , Fisheries , Food Chain , Sea Urchins/parasitology , Snails , Animals , Ecuador , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...