Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 32(19): 195503, 2020 May 08.
Article in English | MEDLINE | ID: mdl-31931489

ABSTRACT

Silicene and germanene freestanding layers are usually described as a honeycomb lattice formed by two hexagonal sub-lattices presenting a height difference, namely the layer buckling. In this work, first-principles calculations show that silicene and germanene can be rippled at 0 K with various wavelengths, without any compressive strain of the layer. For germanene, the height difference between two Ge atoms from the same sub-lattice can be as high as 4.7 [Formula: see text] for an undulation length of 81 [Formula: see text]. The deformations are related to slight (lower than 1.7°) bond angle modifications, and the energy cost is remarkably low, lying between 0.1 and 0.8 meV per atom. These undulations modify the electronic structure, opening a gap of 15 meV.

2.
Phys Chem Chem Phys ; 15(14): 4939-46, 2013 Apr 14.
Article in English | MEDLINE | ID: mdl-23440409

ABSTRACT

Scanning Tunneling Microscopy (STM), Scanning Tunneling Spectroscopy (STS), and manipulation studies were performed on an ordered self-assembled monolayer (SAM) of N,N'-bis(1-hexylheptyl)perylene-3,4:9,10-bis(dicarboximide) molecules on epitaxial graphene on hexagonal silicon carbide - SiC(0001). Four novel aspects of the molecular SAM on graphene are presented. Molecules adsorb in both armchair and zig-zag configurations, giving rise to six orientations of the molecular layer with respect to the underlying substrate. The interaction between the molecules and the graphene surface shifts the LUMO towards the Fermi level, inducing a charge transfer and the opening of a band gap in the graphene, with the LUMO inside. This decouples the LUMO from the surface rendering it invisible in the dI/dV spectroscopy. The HOMO only becomes visible at short tip-surface distances, as its energy lies within the band gap of the SiC substrate. Finally, the observed molecular defects are very particular, being composed exclusively of molecular dimers. These molecular dimers have a stronger interaction with the graphene than other molecules.


Subject(s)
Graphite/chemistry , Perylene/analogs & derivatives , Carbon Compounds, Inorganic/chemistry , Microscopy, Scanning Tunneling , Models, Molecular , Perylene/chemical synthesis , Perylene/chemistry , Quantum Theory , Silicon Compounds/chemistry
3.
Phys Chem Chem Phys ; 14(5): 1700-5, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22193154

ABSTRACT

Controlling the intrinsic optical and electronic properties of a single molecule adsorbed on a surface requires electronic decoupling of some molecular orbitals from the surface states. Scanning tunneling microscopy experiments and density functional theory calculations are used to study a perylene molecule derivative (DHH-PTCDI), adsorbed on the clean 3 × 3 reconstructed wide band gap silicon carbide surface (SiC(0001)-3 × 3). We find that the LUMO of the adsorbed molecule is invisible in I(V) spectra due to the absence of any surface or bulk states and that the HOMO has a very low saturation current in I(z) spectra. These results present a paradox that the molecular orbitals are electronically isolated from the surface of the wide band gap semiconductor even though strong chemical bonds are formed.

4.
Phys Rev Lett ; 105(4): 048302, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20867890

ABSTRACT

The reversible hopping of a bistable atom on the Si(100)-(2×1):H surface is activated nonlocally by hole injection into Si-Si bond surface states with a low temperature (5 K) scanning tunneling microscope. In the contact region, at short distances (<1.5 nm) between the hole injection site and the bistable atom, the hopping yield of the bistable atom exhibits remarkable variations as a function of the hole injection site. It is explained by the density of state distribution along the silicon bond network that shows charge-transfer pathways between the injection sites and the bistable atom.

5.
J Chem Phys ; 128(24): 244710, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18601368

ABSTRACT

We have investigated from a theoretical point of view modifications of the 4,4(')-diacetyl-p-terphenyl molecule chemisorbed on Si(001) induced by the scanning tunneling microscope (STM). In previous experiments, these modifications were observed to occur preferentially at the end of the molecule after a +4.0 V voltage pulse and at the center after a +4.5 V voltage pulse. In the framework of ab initio simulations, we have realized a systematic energetic study of the dissociative chemisorption of one, two, or three phenyl rings of the substituted p-terphenyl molecule. Charge densities were then calculated for the investigated configurations and compared to the STM topographies. Before manipulation with the STM tip, the substituted p-terphenyl molecule is preferentially adsorbed without phenyl ring dissociation, allowing a partial rotation of the central phenyl ring. Our results show that the STM induced modifications observed at the end of the molecule might originate from the dissociation of two phenyl rings (one central and one external ring), while the modifications occurring at the central part of the molecule can be interpreted as a dissociation of the two external rings.

6.
Phys Rev Lett ; 97(21): 216103, 2006 Nov 24.
Article in English | MEDLINE | ID: mdl-17155753

ABSTRACT

At low temperature (5 K), a single biphenyl molecule adsorbed on a Si(100) surface behaves as a bistable device which can be reversibly switched by electronic excitation with the scanning tunneling microscope tip. Density functional theory suggests that the biphenyl molecule is adsorbed with one dissociated hydrogen atom bonded to a neighbor surface silicon atom. By desorbing this hydrogen atom with the STM tip, the interaction of the molecule with the surface is modified such that it becomes transformed into a multistable device with four stable states having switching yields increased by almost 2 orders of magnitude.

SELECTION OF CITATIONS
SEARCH DETAIL
...