Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 13(12): e1005867, 2017 12.
Article in English | MEDLINE | ID: mdl-29227991

ABSTRACT

Novel or rare variants in mitochondrial tRNA sequences may be observed after mitochondrial DNA analysis. Determining whether these variants are pathogenic is critical, but confirmation of the effect of a variant on mitochondrial function can be challenging. We have used available databases of benign and pathogenic variants, alignment between diverse tRNAs, structural information and comparative genomics to predict the impact of all possible single-base variants and deletions. The Mitochondrial tRNA Informatics Predictor (MitoTIP) is available through MITOMAP at www.mitomap.org. The source code for MitoTIP is available at www.github.com/sonneysa/MitoTIP.


Subject(s)
Mitochondria/genetics , RNA, Transfer/genetics , Virulence , Nucleic Acid Conformation , RNA, Transfer/chemistry
2.
Biomicrofluidics ; 9(2): 026501, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25945145

ABSTRACT

The development of widely applicable point-of-care sensing and diagnostic devices can benefit from simple and inexpensive fabrication techniques that expedite the design, testing, and implementation of lab-on-a-chip devices. In particular, electrodes integrated within microfluidic devices enable the use of electrochemical techniques for the label-free detection of relevant analytes. This work presents a novel, simple, and cost-effective bench-top approach for the integration of high surface area three-dimensional structured electrodes fabricated on polystyrene (PS) within poly(dimethylsiloxane) (PDMS)-based microfluidics. Optimization of PS-PDMS bonding results in integrated devices that perform well under pressure and fluidic flow stress. Furthermore, the fabrication and bonding processes are shown to have no effect on sensing electrode performance. Finally, the on-chip sensing capabilities of a three-electrode electrochemical cell are demonstrated with a model redox compound, where the high surface area structured electrodes exhibit ultra-high sensitivity. We propose that the developed approach can significantly expedite and reduce the cost of fabrication of sensing devices where arrays of functionalized electrodes can be used for point-of-care analysis and diagnostics.

SELECTION OF CITATIONS
SEARCH DETAIL
...