Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 12: 680176, 2021.
Article in English | MEDLINE | ID: mdl-34248780

ABSTRACT

Testosterone masculinizes male sexual behavior through an organizational and activational effects. We previously reported that the emission of ultrasonic vocalizations (USVs) in male mice was dependent on the organizational effects of testosterone; females treated with testosterone in the perinatal and peripubertal periods, but not in adults, had increased USV emissions compared to males. Recently, it was revealed that male USVs have various acoustic characteristics and these variations were related to behavioral interactions with other mice. In this regard, the detailed acoustic characteristic changes induced by testosterone have not been fully elucidated. Here, we revealed that testosterone administered to female and male mice modulated the acoustic characteristics of USVs. There was no clear difference in acoustic characteristics between males and females. Call frequencies were higher in testosterone propionate (TP)-treated males and females compared to control males and females. When the calls were classified into nine types, there was also no distinctive difference between males and females, but TP increased the number of calls with a high frequency, and decreased the number of calls with a low frequency and short duration. The transition analysis by call type revealed that even though there was no statistically significant difference, TP-treated males and females had a similar pattern of transition to control males and females, respectively. Collectively, these results suggest that testosterone treatment can enhance the emission of USVs both in male and female, but the acoustic characteristics of TP-treated females were not the same as those of intact males.

2.
Dev Psychobiol ; 63(4): 725-733, 2021 05.
Article in English | MEDLINE | ID: mdl-33070342

ABSTRACT

Testosterone masculinizes male sexual behavior by providing organizational and activational effects during the perinatal and peripubertal periods and during adulthood, respectively. We revealed that the emission of ultrasonic vocalizations (USVs) and mounting behavior was regulated by different neural circuits. However, the detailed testosterone effects on these two behaviors have not been fully elucidated. Here, we evaluated the time-dependent effects of testosterone on USVs and mounting behavior in mice using a testosterone treatment model, in which females were treated with testosterone to assess the "gain-of-function" and a "loss-of-function" model. In the loss-of-function model, we used Ad4BP/SF-1ΔFLC/- male mice, in which testosterone production was abolished in prenatal and postnatal stages, and Ad4BP/SF-1ΔFLC/ΔFLC mice, in which testosterone production was markedly reduced only in prenatal stages. When testosterone was administered to female mice during the neonatal and peripubertal periods, but not during adulthood, USV emissions increased. Conversely, testosterone treatment in adult female mice increased the mounting behavior, but not USVs. In Ad4BP/SF-1ΔFLC/- mice, USVs and mounting behavior was completely absent. Ad4BP/SF-1ΔFLC/ΔFLC male mice displayed equivalent levels of USVs but less mounting behavior. Collectively, these results suggest that testosterone has dual regulatory roles in USV emissions and mounting behavior.


Subject(s)
Ultrasonics , Vocalization, Animal , Animals , Female , Male , Mice , Pregnancy , Testosterone/pharmacology , Vocalization, Animal/physiology
3.
Sci Rep ; 3: 3136, 2013 Nov 05.
Article in English | MEDLINE | ID: mdl-24190364

ABSTRACT

Recently developed transcription activator-like effector nuclease (TALEN) technology has enabled the creation of knockout mice, even for genes on the Y chromosome. In this study, we generated a knockout mouse for Sry, a sex-determining gene on the Y chromosome, using microinjection of TALEN RNA into pronuclear stage oocytes. As expected, the knockout mouse had female external and internal genitalia, a female level of blood testosterone and a female sexually dimorphic nucleus in the brain. The knockout mouse exhibited an estrous cycle and performed copulatory behavior as females, although it was infertile or had reduced fertility. A histological analysis showed that the ovary of the knockout mouse displayed a reduced number of oocytes and luteinized unruptured follicles, implying that a reduced number of ovulated oocytes is a possible reason for infertility and/or reduced fertility in the KO mouse.


Subject(s)
Endonucleases/genetics , Endonucleases/metabolism , Microinjections , Oocytes/metabolism , SOXB1 Transcription Factors/genetics , Animals , Base Sequence , DNA Mutational Analysis , Estrous Cycle , Female , Fertility , Gene Expression , Gene Targeting/methods , Hormones/blood , Male , Mice , Mice, Knockout , Molecular Sequence Data , Mutation , Phenotype , SOXB1 Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...