Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Breed Sci ; 67(4): 333-339, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29085242

ABSTRACT

The occurrence of chalky rice (Oryza sativa L.) grains caused by high temperature is a serious problem in rice production. Of the several kinds of chalky grains, milky-white grains are not well analyzed. The milky-white rice grain phenomenon is caused by genetic factors as well as environmental and nutritional conditions. To analyze the genetic control system for rice grain quality, we raised recombinant inbred lines from progeny produced from 'Tsukushiroman' (high temperature sensitive) and 'Chikushi 52' (high temperature tolerant) cultivars. Quantitative trait locus (QTL) analysis revealed that the QTL on chromosome 4, linked to the simple sequence repeat marker RM16424, contributed substantially to the occurrence of milky-white grains, as it was detected over two experimental years. To validate the effect of the QTL, we developed near isogenic lines that have the 'Chikushi 52' segment on the short arm of chromosome 4 in the 'Tsukushiroman' genetic background, and that had a lower milky-white grain ratio than that of 'Tsukushiroman' when exposed to high temperatures during the ripening period. These results suggest that the 'Chikushi 52' allele on chromosome 4 suppresses the occurrence of milky-white grains and improves rice grain quality under heat stress during the grain ripening period.

2.
Breed Sci ; 65(3): 216-25, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26175618

ABSTRACT

There is increasing evidence that global warming affects the development of rice. High temperatures during ripening increase the ratio of undesirable chalky grains followed by deteriorating grain appearance quality. In order to detect quantitative trait loci (QTLs) controlling the occurrence of white-back and basal-white chalky grains of brown rice, QTL analysis was performed using recombinant inbred lines derived from a cross between two strains, 'Tsukushiroman' (sensitive to heat stress) and 'Chikushi 52' (tolerant of heat stress). The F7 and F8 lines were exposed to heat stress during the ripening period in two locations, Fukuoka and Kagoshima, in Japan. QTLs for white-back grains and basal-white grains were detected on chromosomes 1, 3, and 8, and those for basal-white grains were detected on chromosomes 2, 3, and 12. QTLs on chromosome 8 for white-back grains were shared in the plants grown in both locations. Near-isogenic lines (NILs), which harbored a segment from 'Chikushi 52' on chromosome 8 with the genetic background of 'Tsukushiroman', showed relatively lower ratios of white-back grains than 'Tsukushiroman'. Therefore, insertion of the 'Chikushi 52' genomic region of the QTL on chromosome 8 can improve the quality of rice when it is grown under heat stress conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...