ABSTRACT
Broiler litter reutilization consists in using the same bedding material to cover the house floor for several broiler flocks. This requires the litter to be treated in order to reduce the amount of microorganisms, according to international recommendations. The aim of this study was to evaluate two methods of broiler litter fermentation based on composting concepts and their effect on litter and the air quality during fermentation in small-scale broiler houses. The experiment was carried out in the Environmental Laboratory I of the School of Agricultural Engineering of the State University of Campinas, utilizing six small-scale houses. Litter from the same grow-out (one, two or three) was distributed in two experimental houses, where it was either piled or spread. Before beginning the treatment, six litter samples were collected from each house and analyzed for total nitrogen content, humidity, pH and microbial counts. Litter humidity, gas emission (NH3 and CO2), environmental temperature, air relative humidity, and air velocity were determined during and after composting. Bacterial population, especially of Salmonella sp, was higher when the litter was piled compared with spread litter. However, fungi population showed a different pattern, decreasing after composting. Nevertheless, both treatments were not able to significantly reduce bacterial counts, specifically Salmonella sp, when the population before and after fermentation were compared
ABSTRACT
Health status, feed conversion ratio, and mortality are long known broiler chicken production indicators. However, further parameters are required by today's demanding meat markets, as these indicators are not sufficiently accurate to determine flock overall welfare. Morphological asymmetry has been pointed as an alternative welfare indicator as it reflects the ability of the bird to cope with the challenges that rearing conditions may impose. This study aimed at evaluating the possibility of using morphological asymmetry as a welfare indicator. Broilers from 28 to 42 days of age were used in the trial. Birds were randomly selected in a commercial poultry farm and transported to the laboratory. They walked over the force measurement platform in order to determined their feet force as a percentage of body weight. The following body parts of the live birds were measured by two different operators using a digital caliper: tarsometatarsus length, outertoe length, midtoe length, and backtoe length. In the corresponding carcasses, the following traits were measured: wattle width, eye length, and first secondary feather length. Data were submitted to statistical analyses and no correlation was found between specific feet trait measurements and walking ability. Considering the time budget involved in measuring morphological asymmetry, this procedure did not appear to be a practically feasible welfare indicator.
ABSTRACT
Health status, feed conversion ratio, and mortality are long known broiler chicken production indicators. However, further parameters are required by today's demanding meat markets, as these indicators are not sufficiently accurate to determine flock overall welfare. Morphological asymmetry has been pointed as an alternative welfare indicator as it reflects the ability of the bird to cope with the challenges that rearing conditions may impose. This study aimed at evaluating the possibility of using morphological asymmetry as a welfare indicator. Broilers from 28 to 42 days of age were used in the trial. Birds were randomly selected in a commercial poultry farm and transported to the laboratory. They walked over the force measurement platform in order to determined their feet force as a percentage of body weight. The following body parts of the live birds were measured by two different operators using a digital caliper: tarsometatarsus length, outertoe length, midtoe length, and backtoe length. In the corresponding carcasses, the following traits were measured: wattle width, eye length, and first secondary feather length. Data were submitted to statistical analyses and no correlation was found between specific feet trait measurements and walking ability. Considering the time budget involved in measuring morphological asymmetry, this procedure did not appear to be a practically feasible welfare indicator.