Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Sci Food Agric ; 98(11): 4253-4267, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29424423

ABSTRACT

BACKGROUND: Winter pea (Pisum sativum L.) grows well in a wide geographic region, both as a forage and cover crop. Understanding the quality constituents of this crop is important for both end uses; however, analysis of quality constituents by conventional wet chemistry methods is laborious, slow and costly. Near infrared reflectance spectroscopy (NIRS) is a precise, accurate, rapid and cheap alternative to using wet chemistry for estimating quality constituents. We developed and validated NIRS calibration models for constituent analysis of this crop. RESULTS: Of the 11 constituent models developed, nine constituents including moisture, dry-matter, total-nitrogen, crude protein, acid detergent fiber, neutral detergent fiber, AD-lignin, cellulose and non-fibrous carbohydrate had low standard errors and a high coefficient of determination (R2 = 0.88-0.98; 1 - VR, which is the coefficient of determination during cross-validation = 0.77-0.92) for both calibration and cross-validation, indicating their potential for quantitative predictability. The calibration models for ash (R2 = 0.65; 1 - VR = 0.46) and hemicellulose (R2 = 0.75; 1 - VR = 0.50) also appeared to be adequate for qualitative screening. Predictions of an independent validation set yielded reliable agreement between the NIRS predicted values and the reference values with low standard error of prediction (SEP), low bias, high coefficient of determination (r2 = 0.82-0.95), high ratios of performance to deviation (RPD = SD/SEP; 2.30-3.85) and high ratios of performance to interquartile distance (RPIQ = IQ/SEP; 2.57-7.59) for all 11 constituents. CONCLUSION: Precise, accurate and rapid analysis of winter pea for major forage and cover crop quality constituents can be performed at a low cost using the NIRS calibration models developed. © 2018 Society of Chemical Industry.


Subject(s)
Pisum sativum/chemistry , Spectroscopy, Near-Infrared/methods , Calibration , Cellulose/analysis , Fruit/chemistry , Lignin/analysis , Nitrogen/analysis , Quality Control , Spectroscopy, Near-Infrared/standards
2.
Int J Environ Res Public Health ; 8(5): 1491-502, 2011 05.
Article in English | MEDLINE | ID: mdl-21655132

ABSTRACT

Application of poultry litter (PL) to soil may lead to nitrogen (N) losses through ammonia (NH(3)) volatilization and to potential contamination of surface runoff with PL-derived phosphorus (P). Amending litter with acidified biochar may minimize these problems by decreasing litter pH and by retaining litter-derived P, respectively. This study evaluated the effect of acidified biochars from pine chips (PC) and peanut hulls (PH) on NH(3) losses and inorganic N and P released from surface-applied or incorporated PL. Poultry litter with or without acidified biochars was surface-applied or incorporated into the soil and incubated for 21 d. Volatilized NH(3) was determined by trapping it in acid. Inorganic N and P were determined by leaching the soil with 0.01 M of CaCl(2) during the study and by extracting it with 1 M KCl after incubation. Acidified biochars reduced NH(3) losses by 58 to 63% with surface-applied PL, and by 56 to 60% with incorporated PL. Except for PH biochar, which caused a small increase in leached NH(4) (+)-N with incorporated PL, acidified biochars had no effect on leached or KCl-extractable inorganic N and P from surface-applied or incorporated PL. These results suggest that acidified biochars may decrease NH(3) losses from PL but may not reduce the potential for P loss in surface runoff from soils receiving PL.


Subject(s)
Ammonia/analysis , Charcoal/chemistry , Manure , Water Pollution/prevention & control , Animals , Nitrogen Compounds/chemistry , Phosphorus Compounds/chemistry , Poultry , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...