Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Med Genet B Neuropsychiatr Genet ; 139B(1): 61-8, 2005 Nov 05.
Article in English | MEDLINE | ID: mdl-16152574

ABSTRACT

To increase the likelihood of finding genetic variation conferring liability to eating disorders, we measured over 100 attributes thought to be related to liability to eating disorders on affected individuals from multiplex families and two cohorts: one recruited through a proband with anorexia nervosa (AN; AN cohort); the other recruited through a proband with bulimia nervosa (BN; BN cohort). By a multilayer decision process based on expert evaluation and statistical analysis, six traits were selected for linkage analysis (1): obsessionality (OBS), age at menarche (MENAR), and anxiety (ANX) for quantitative trait locus (QTL) linkage analysis; and lifetime minimum body mass index (BMI), concern over mistakes (CM), and food-related obsessions (OBF) for covariate-based linkage analysis. The BN cohort produced the largest linkage signals: for QTL linkage analysis, four suggestive signals: (for MENAR, at 10p13; for ANX, at 1q31.1, 4q35.2, and 8q13.1); for covariate-based linkage analyses, both significant and suggestive linkages (for BMI, one significant [4q21.1] and three suggestive [3p23, 10p13, 5p15.3]; for CM, two significant [16p13.3, 14q21.1] and three suggestive [4p15.33, 8q11.23, 10p11.21]; and for OBF, one significant [14q21.1] and five suggestive [4p16.1, 10p13.1, 8q11.23, 16p13.3, 18p11.31]). Results from the AN cohort were far less compelling: for QTL linkage analysis, two suggestive signals (for OBS at 6q21 and for ANX at 9p21.3); for covariate-based linkage analysis, five suggestive signals (for BMI at 4q13.1, for CM at 11p11.2 and 17q25.1, and for OBF at 17q25.1 and 15q26.2). Overlap between the two cohorts was minimal for substantial linkage signals.


Subject(s)
Anorexia Nervosa/genetics , Bulimia Nervosa/genetics , Genetic Linkage , Phenotype , Quantitative Trait Loci , Quantitative Trait, Heritable , Anxiety/genetics , Female , Humans , Menarche/genetics
2.
Am J Med Genet B Neuropsychiatr Genet ; 139B(1): 81-7, 2005 Nov 05.
Article in English | MEDLINE | ID: mdl-16152575

ABSTRACT

Vulnerability to anorexia nervosa (AN) and bulimia nervosa (BN) arise from the interplay of genetic and environmental factors. To explore the genetic contribution, we measured over 100 psychiatric, personality, and temperament phenotypes of individuals with eating disorders from 154 multiplex families accessed through an AN proband (AN cohort) and 244 multiplex families accessed through a BN proband (BN cohort). To select a parsimonious subset of these attributes for linkage analysis, we subjected the variables to a multilayer decision process based on expert evaluation and statistical analysis. Criteria for trait choice included relevance to eating disorders pathology, published evidence for heritability, and results from our data. Based on these criteria, we chose six traits to analyze for linkage. Obsessionality, Age-at-Menarche, and a composite Anxiety measure displayed features of heritable quantitative traits, such as normal distribution and familial correlation, and thus appeared ideal for quantitative trait locus (QTL) linkage analysis. By contrast, some families showed highly concordant and extreme values for three variables-lifetime minimum Body Mass Index (lowest BMI attained during the course of illness), concern over mistakes, and food-related obsessions-whereas others did not. These distributions are consistent with a mixture of populations, and thus the variables were matched with covariate linkage analysis. Linkage results appear in a subsequent report. Our report lays out a systematic roadmap for utilizing a rich set of phenotypes for genetic analyses, including the selection of linkage methods paired to those phenotypes.


Subject(s)
Feeding and Eating Disorders/genetics , Genetic Linkage , Algorithms , Female , Genetic Predisposition to Disease , Humans , Male , Menarche/genetics , Multivariate Analysis , Phenotype , Quantitative Trait Loci
3.
Hum Genomics ; 2(2): 81-9, 2005 Jun.
Article in English | MEDLINE | ID: mdl-16004724

ABSTRACT

Understanding the distribution of human genetic variation is an important foundation for research into the genetics of common diseases. Some of the alleles that modify common disease risk are themselves likely to be common and, thus, amenable to identification using gene-association methods. A problem with this approach is that the large sample sizes required for sufficient statistical power to detect alleles with moderate effect make gene-association studies susceptible to false-positive findings as the result of population stratification. Such type I errors can be eliminated by using either family-based association tests or methods that sufficiently adjust for population stratification. These methods require the availability of genetic markers that can detect and, thus, control for sources of genetic stratification among populations. In an effort to investigate population stratification and identify appropriate marker panels, we have analysed 11,555 single nucleotide polymorphisms in 203 individuals from 12 diverse human populations. Individuals in each population cluster to the exclusion of individuals from other populations using two clustering methods. Higher-order branching and clustering of the populations are consistent with the geographic origins of populations and with previously published genetic analyses. These data provide a valuable resource for the definition of marker panels to detect and control for population stratification in population-based gene identification studies. Using three US resident populations (European-American, African-American and Puerto Rican), we demonstrate how such studies can proceed, quantifying proportional ancestry levels and detecting significant admixture structure in each of these populations.


Subject(s)
Genetic Variation , Genetics, Medical , Polymorphism, Single Nucleotide , Chromosomes, Human, X , Emigration and Immigration , Genotype , Humans , Models, Genetic , Population , Racial Groups/genetics
4.
Genet Epidemiol ; 28(3): 207-19, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15637715

ABSTRACT

A goal of association analysis is to determine whether variation in a particular candidate region or gene is associated with liability to complex disease. To evaluate such candidates, ubiquitous Single Nucleotide Polymorphisms (SNPs) are useful. It is critical, however, to select a set of SNPs that are in substantial linkage disequilibrium (LD) with all other polymorphisms in the region. Whether there is an ideal statistical framework to test such a set of 'tag SNPs' for association is unknown. Compared to tests for association based on frequencies of haplotypes, recent evidence suggests tests for association based on linear combinations of the tag SNPs (Hotelling T(2) test) are more powerful. Following this logical progression, we wondered if single-locus tests would prove generally more powerful than the regression-based tests? We answer this question by investigating four inferential procedures: the maximum of a series of test statistics corrected for multiple testing by the Bonferroni procedure, T(B), or by permutation of case-control status, T(P); a procedure that tests the maximum of a smoothed curve fitted to the series of of test statistics, T(S); and the Hotelling T(2) procedure, which we call T(R). These procedures are evaluated by simulating data like that from human populations, including realistic levels of LD and realistic effects of alleles conferring liability to disease. We find that power depends on the correlation structure of SNPs within a gene, the density of tag SNPs, and the placement of the liability allele. The clearest pattern emerges between power and the number of SNPs selected. When a large fraction of the SNPs within a gene are tested, and multiple SNPs are highly correlated with the liability allele, T(S) has better power. Using a SNP selection scheme that optimizes power but also requires a substantial number of SNPs to be genotyped (roughly 10-20 SNPs per gene), power of T(P) is generally superior to that for the other procedures, including T(R). Finally, when a SNP selection procedure that targets a minimal number of SNPs per gene is applied, the average performances of T(P) and T(R) are indistinguishable.


Subject(s)
Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Computer Simulation , Genotype , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Regression Analysis , Software
5.
Genet Epidemiol ; 28(3): 193-206, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15637716

ABSTRACT

Linkage disequilibrium (LD) in the human genome, often measured as pairwise correlation between adjacent markers, shows substantial spatial heterogeneity. Congruent with these results, studies have found that certain regions of the genome have far less haplotype diversity than expected if the alleles at multiple markers were independent, while other sets of adjacent markers behave almost independently. Regions with limited haplotype diversity have been described as "blocked" or "haplotype blocks." In this article, we propose a new method that aims to distinguish between blocked and unblocked regions in the genome. Like some other approaches, the method analyses haplotype diversity. Unlike other methods, it allows for adjacent, distinct blocks and also multiple, independent single nucleotide polymorphisms (SNPs) separating blocks. Based on an approximate likelihood model and a parsimony criterion to penalize for model complexity, the method partitions a genomic region into blocks relatively quickly, and simulations suggest that its partitions are accurate. We also propose a new, efficient method to select SNPs for association analysis, namely tag SNPs. These methods compare favorably to similar blocking and tagging methods using simulations.


Subject(s)
Genome, Human , Linkage Disequilibrium , Models, Genetic , Algorithms , Alleles , Genetic Markers , Haplotypes , Humans , Polymorphism, Single Nucleotide
6.
Hum Genomics ; 1(4): 274-86, 2004 May.
Article in English | MEDLINE | ID: mdl-15588487

ABSTRACT

Understanding the nature of evolutionary relationships among persons and populations is important for the efficient application of genome science to biomedical research. We have analysed 8,525 autosomal single nucleotide polymorphisms (SNPs) in 84 individuals from four populations: African-American, European-American, Chinese and Japanese. Individual relationships were reconstructed using the allele sharing distance and the neighbour-joining tree making method. Trees show clear clustering according to population, with the root branching from the African-American clade. The African-American cluster is much less star-like than European-American and East Asian clusters, primarily because of admixture. Furthermore, on the East Asian branch, all ten Chinese individuals cluster together and all ten Japanese individuals cluster together. Using positional information, we demonstrate strong correlations between inter-marker distance and both locus-specific FST (the proportion of total variation due to differentiation) levels and branch lengths. Chromosomal maps of the distribution of locus-specific branch lengths were constructed by combining these data with other published SNP markers (total of 33,704 SNPs). These maps clearly illustrate a non-uniform distribution of human genetic substructure, an instructional and useful paradigm for education and research.


Subject(s)
Genetics, Population , Genome, Human , Polymorphism, Single Nucleotide , Humans
7.
Hum Genet ; 115(1): 36-56, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15108119

ABSTRACT

While there is considerable appeal to the idea of selecting a few SNPs to represent all, or much, of the DNA sequence variability in a local chromosomal region, it is also important to quantify what detail is lost in adopting such an approach. To address this issue, we compared high- and low-resolution depictions of sequence diversity for the same genomic region, the APOA1/C3/A4/A5 gene cluster on chromosome 11. First, extensive re-sequencing identified all nucleotide and sequence haplotype variation of the linked apolipoprotein genes in 72 individuals from three populations: African-Americans from Jackson, Miss., Europeans from North Karelia, Finland, and European-Americans from Rochester, Minn. We identified 124 SNPs in 17.7 kb and significant differences in variation among genes. APOC3 gene diversity was particularly distinctive at high resolution, showing large allele frequency differences ( F(ST) values >0.250) between Jackson and the other two samples, and divergent population-specific haplotype lineages. Next, we selected haplotype-tagging SNPs (htSNPs) for each gene, at a density of approximately one SNP per kb, using an algorithm suggested by Stram et al. (2003). The 17 htSNPs identified were then used to reconstruct low-resolution haplotypes, from which inferences about the structure of variation were also drawn. This comparison showed that while the htSNPs successfully tagged common haplotype variation, they also left much underlying sequence diversity undetected and failed, in some cases, to co-classify groups of closely related haplotypes. The implications of these findings for other haplotype-based descriptions of human variation are discussed.


Subject(s)
Apolipoproteins A/genetics , Apolipoproteins C/genetics , Genetic Variation , Multigene Family , Apolipoprotein C-III , Base Sequence , Black People/genetics , Chromosomes, Human, Pair 11 , Gene Frequency , Haplotypes , Humans , Polymorphism, Single Nucleotide , White People/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...