Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 15(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37370732

ABSTRACT

BACKGROUND AND AIMS: Colonoscopy is currently the most effective way of detecting colorectal cancer and removing polyps, but it has some drawbacks and can miss up to 22% of polyps. Microwave imaging has the potential to provide a 360° view of the colon and addresses some of the limitations of conventional colonoscopy. This study evaluates the feasibility of a microwave-based colonoscopy in an in vivo porcine model. METHODS: A prototype device with microwave antennas attached to a conventional endoscope was tested on four healthy pigs and three gene-targeted pigs with mutations in the adenomatous polyposis coli gene. The first four animals were used to evaluate safety and maneuverability and compatibility with endoscopic tools. The ability to detect polyps was tested in a series of three gene-targeted pigs. RESULTS: the microwave-based device did not affect endoscopic vision or cause any adverse events such as deep mural injuries. The microwave system was stable during the procedures, and the detection algorithm showed a maximum detection signal for adenomas compared with healthy mucosa. CONCLUSIONS: Microwave-based colonoscopy is feasible and safe in a preclinical model, and it has the potential to improve polyp detection. Further investigations are required to assess the device's efficacy in humans.

2.
Sensors (Basel) ; 22(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808397

ABSTRACT

This study assesses the efficacy of detecting colorectal cancer precursors or polyps in an ex vivo human colon model with a microwave colonoscopy algorithm. Nowadays, 22% of polyps go undetected with conventional colonoscopy, and the risk of cancer after a negative colonoscopy can be up to 7.9%. We developed a microwave colonoscopy device that consists of a cylindrical ring-shaped switchable microwave antenna array that can be attached to the tip of a conventional colonoscope as an accessory. The accessory is connected to an external unit that allows successive measurements of the colon and processes the measurements with a microwave imaging algorithm. An acoustic signal is generated when a polyp is detected. Fifteen ex vivo freshly excised human colons with cancer (n = 12) or polyps (n = 3) were examined with the microwave-assisted colonoscopy system simulating a real colonoscopy exploration. After the experiment, the dielectric properties of the specimens were measured with a coaxial probe and the samples underwent a pathology analysis. The results show that all the neoplasms were detected with a sensitivity of 100% and specificity of 87.4%.


Subject(s)
Colonic Polyps , Colorectal Neoplasms , Algorithms , Colonic Polyps/diagnostic imaging , Colonic Polyps/pathology , Colonoscopy/methods , Colorectal Neoplasms/diagnostic imaging , Humans , Microwaves
3.
Gastroenterol Res Pract ; 2022: 9522737, 2022.
Article in English | MEDLINE | ID: mdl-35126510

ABSTRACT

INTRODUCTION: Microwave imaging can obtain 360° anatomical and functional images of the colon representing the existing contrast in dielectric properties between different tissues. Microwaves are safe (nonionizing) and have the potential of reducing the visualization problems of conventional colonoscopy. This study assessed the efficacy of a microwave-based colonoscopy device to detect neoplastic lesions in an ex vivo human colon model. METHODS: Fresh surgically excised colorectal specimens containing cancer or polyps were fixed to a 3D positioning system, and the accessory device was introduced horizontally inside the ex vivo colon lumen and moved along it simulating a real colonoscopy exploration. Measurements of the colon were taken every 4 mm with the microwave-based colonoscopy device and processed with a microwave imaging algorithm. RESULTS: 14 ex vivo human colorectal specimens with carcinomas (n = 11) or adenomas with high grade dysplasia (n = 3) were examined with a microwave-based device. Using a detection threshold of 2.79 for the dielectric property contrast, all lesions were detected without false positives or false negatives. CONCLUSIONS: This study demonstrates the use of a microwave-based device to be used as an accessory of a standard colonoscope to detect neoplastic lesions in surgically excised colorectal specimens.

SELECTION OF CITATIONS
SEARCH DETAIL
...