Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 108(1-3): 215-30, 2004 Mar 01.
Article in English | MEDLINE | ID: mdl-15043931

ABSTRACT

Analysis of sedimentation velocity data for indefinite self-associating systems is often achieved by fitting of weight average sedimentation coefficients (s(20,w)) However, this method discriminates poorly between alternative models of association and is biased by the presence of inactive monomers and irreversible aggregates. Therefore, a more robust method for extracting the binding constants for indefinite self-associating systems has been developed. This approach utilizes a set of fitting routines (SedAnal) that perform global non-linear least squares fits of up to 10 sedimentation velocity experiments, corresponding to different loading concentrations, by a combination of finite element simulations and a fitting algorithm that uses a simplex convergence routine to search parameter space. Indefinite self-association is analyzed with the software program isodesfitter, which incorporates user provided functions for sedimentation coefficients as a function of the degree of polymerization for spherical, linear and helical polymer models. The computer program hydro was used to generate the sedimentation coefficient values for the linear and helical polymer assembly mechanisms. Since this curve fitting method directly fits the shape of the sedimenting boundary, it is in principle very sensitive to alternative models and the presence of species not participating in the reaction. This approach is compared with traditional fitting of weight average data and applied to the initial stages of Mg(2+)-induced tubulin self-associating into small curved polymers, and vinblastine-induced tubulin spiral formation. The appropriate use and limitations of the methods are discussed.


Subject(s)
Polymers/chemistry , Ultracentrifugation/methods , Animals , Brain/metabolism , Macromolecular Substances , Magnesium/chemistry , Mathematics , Models, Chemical , Molecular Weight , Protein Binding , Software , Swine , Tubulin/chemistry , Tubulin/metabolism , Vinblastine/chemistry , Vinblastine/metabolism
2.
J Biol Chem ; 275(29): 22187-95, 2000 Jul 21.
Article in English | MEDLINE | ID: mdl-10767290

ABSTRACT

Conventional kinesin is a processive, microtubule-based motor protein that drives movements of membranous organelles in neurons. Amino acid Thr(291) of Drosophila kinesin heavy chain is identical in all superfamily members and is located in alpha-helix 5 on the microtubule-binding surface of the catalytic motor domain. Substitution of methionine at Thr(291) results in complete loss of function in vivo. In vitro, the T291M mutation disrupts the ATPase cross-bridge cycle of a kinesin motor/neck construct, K401-4 (Brendza, K. M., Rose, D. J., Gilbert, S. P., and Saxton, W. M. (1999) J. Biol. Chem. 274, 31506-31514). The pre-steady-state kinetic analysis presented here shows that ATP binding is weakened significantly, and the rate of ATP hydrolysis is increased. The mutant motor also fails to distinguish ATP from ADP, suggesting that the contacts important for sensing the gamma-phosphate have been altered. The results indicate that there is a signaling defect between the motor domains of the T291M dimer. The ATPase cycles of the two motor domains appear to become kinetically uncoupled, causing them to work more independently rather than in the strict, coordinated fashion that is typical of kinesin.


Subject(s)
Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Kinesins/chemistry , Molecular Motor Proteins/chemistry , Adenosine Triphosphatases/genetics , Animals , Hydrolysis , Kinesins/genetics , Kinetics , Molecular Motor Proteins/genetics , Mutation , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...