Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Foods ; 11(9)2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35564006

ABSTRACT

Faba bean is a potential ingredient due to its high protein yield and its possible cultivation in colder climate regions. In this study, meat analogues made from faba bean protein isolate (FPI) and concentrate (FPC) blends were produced using high moisture extrusion. The aim of this study was to investigate the effect of the FPI content (FPIc), feed water content (FWC), and temperature of the long cooling die (LT) during extrusion on the mechanical and physicochemical properties as well as on the structure of the meat analogues. Increased FPIc resulted in higher values in hardness, gumminess, chewiness, and cutting strengths as well as in darker colour and decreased water absorption capacity. The effect of increased FWC on these properties was weaker and the opposite. Images from microtomography revealed that higher FPIc led to a less organised fibrous structure. In conclusion, fibrous structures can be achieved by utilising a mixture of faba bean protein ingredients, and a higher FPC content seemed to promote fibre formation in the meat analogue.

2.
J Agric Food Chem ; 70(7): 2366-2373, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35156817

ABSTRACT

Pure oats are generally accepted to be safe for most celiac patients, and consumption of oats provides advantageous dietary fibers. However, oats can be contaminated by gluten proteins from wheat, barley, and/or rye. The analytical challenge lies in the reliability of the quantification method and how to maintain the contamination level under a gluten-free food threshold of 20 mg/kg. In this study, we investigated barley-spiked oat flour samples at four levels using four gluten ELISA kits. The largest recovery variance was with the R5 kit that gave 5-6 times overestimation; the G12 kit cross-reacted with oat proteins and gave 4-5 times overestimation at all spiked levels. The Total Gluten and Morinaga kits gave satisfactory recoveries. Total barley hordeins were isolated and characterized to be used as a common calibrator in all four kits aiming at harmonizing the results and to test the kits' performance. Immunoblotting of total hordein isolate revealed that Total Gluten and Morinaga antibodies provided an overall detection, while R5 and G12 antibodies recognized specific hordein groups leading to a larger difference when wheat and barley were used as the calibrant. Calibration with total hordein isolate corrected the overestimation problem and decreased the variability between the four gluten kits.


Subject(s)
Avena , Food Contamination/analysis , Hordeum , Enzyme-Linked Immunosorbent Assay/methods , Glutens/analysis , Reproducibility of Results
3.
Foods ; 11(3)2022 Feb 03.
Article in English | MEDLINE | ID: mdl-35159606

ABSTRACT

Millennials are considered the key generation with regard to the consumption of plant-based meat alternatives via flexitarianism. This study sought to characterize millennials' consumer segments based on their consumption of and attitudes toward meat and meat alternatives. We conducted an online survey on the hedonic tones of the associations evoked by meat and meat alternatives, consumption of such foods, and diet-related attitudes among a representative sample of Finnish millennials (N = 546, 59% women, age 20-39 years). Some 41% of respondents regularly ate plant-based meat alternatives, while 43% had tried such foods. We divided the respondents into six segments based on the hedonic tones of their meat vs. meat alternatives associations. The segments differed in terms of their consumption of meat alternatives and the underlying reasons why, importance of meat in meals, and Meat Commitment Scale scores. The segment that reported much more positive associations with meat than meat alternatives (~14% of the respondents) may prove resistant to interventions intended to reduce meat intake, whereas the segment that displayed the most positive attitudes toward meat alternatives (~18%) did not eat much meat. Thus, the four middle segments (totaling ~68%), whose associations' hedonic tones were close to each other, may be the best targets for future interventions designed to reduce meat consumption through the use of meat alternatives. To conclude, introducing a simple segmentation allowed us to identify consumer segments with large potential to reduce meat consumption.

4.
Foods ; 10(12)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34945603

ABSTRACT

The aim of this study was to develop an extraction method to produce highly functional oat protein concentrates. We investigated the possibility of combining enzyme-aided slightly alkaline (pH 8.0) extraction with ultrafiltration and subsequent diafiltration for concentration of the extracted oat proteins. A further aim was to study how the deamidation of oat proteins with protein-glutaminase (PG) improves the solubility of proteins as a function of the following parameters: pH (6.0-9.0), enzyme dosage (4-20 U/g protein), and incubation time (1-4 h) with response surface methodology (RSM). Furthermore, we investigated selected functional properties, such as heat-induced gelation and solubility, of the oat protein concentrates. The chosen parameters for the enzymatic deamidation pre-treatment process by PG were as follows: pH 8.0, dosage 11.0 U/g protein, and an incubation time of 4 h (1 h at native pH and 3 h at pH 8.0). Two oat protein concentrates were produced, non-deamidated and ultrafiltered, and deamidated and ultrafiltered, with protein concentrations of 45.0 and 52.4%, respectively. The solubility of both oat protein concentrates was significantly improved at neutral and slightly alkaline pH compared to the solubility of proteins extracted from the starting material. Additionally, both oat protein concentrates produced equally strong heat-induced gel-like structures at a protein concentration of 10%.

5.
Foods ; 10(10)2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34681511

ABSTRACT

Whole grain oat has become an increasingly popular baking ingredient. Still, oat baking poses many industrial challenges because the baking quality criteria have not been set for whole grain oat flours, and cultivar variation remains unknown. We aimed to assess the baking quality variation of twenty whole grain oat cultivar samples, and to identify the factors that caused the variation. It was hypothesised that by optimising the water absorption of the dough (i.e., dough yield) by test baking method, the best baking potential could be achieved for all oat cultivar samples. The baking trials were conducted as whole oat baking, without wheat or gluten additions. In most of the samples, good baking quality was obtained by dough yield optimisation. The highest specific volumes (1.9-1.93 mL/g) and best crumb properties were achieved in the samples with the highest optimal dough yields, 205. However, baking quality varied, as all samples could not be baked with good quality at high dough yields. Additionally, small median particle size and high fat content of the oat flours were related to good baking properties of whole grain oat at optimised dough yield (p < 0.05). These findings can benefit the development and the optimisation of industrial oat baking processes.

6.
Foods ; 10(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34359387

ABSTRACT

Grain protein fractions have great potential as ingredients that contain high amounts of valuable nutritional components. The aim of this study was to study the rheological behavior of destarched oat and pea proteins and their blends in extrusion-like conditions with a closed cavity rheometer. Additionally, the possibility of producing fibrous structures with high-moisture extrusion from a blend of destarched oat and pea protein was investigated. In the temperature sweep measurement (60-160 °C) of the destarched oat protein concentrate and pea protein isolate blend, three denaturation and polymerization sections were observed. In addition, polymerization as a function of time was recorded in the time sweep measurements. The melting temperature of grain proteins was an important factor when producing texturized structures with a high-moisture extrusion. The formation of fibrillar structures was investigated with high-moisture extrusion from the destarched oat and pea protein blend at temperatures ranging from 140 to 170 °C. The protein-protein interactions were significantly influenced in the extruded samples. This was due to a decrease in the amount of extractable protein in selective buffers. In particular, there was a decrease in non-covalent and covalent bonds due to the formation of insoluble protein complexes.

7.
Foods ; 10(7)2021 Jul 05.
Article in English | MEDLINE | ID: mdl-34359422

ABSTRACT

The aim of this study was to determine whether the properties of the native oat grain or non-heat-treated groats (laboratory-scale dehulling) can be used to predict the quality of the industrially produced oat flour produced from heat-treated groats. Quality properties such as the color, hectoliter weight, thousand seed weight and hull content of Finnish native grains (n = 30) were determined. Furthermore, the relationship between the properties of the native grains and the chemical composition of the raw oat materials before and after the milling process were studied. A significant relationship (p < 0.01) was observed between the thousand seed weight of the native oat groats and the chemical composition of the industrially produced oat flour. Furthermore, the protein content of the native grains measured by NIT correlated with the chemical composition of the oat flours. These results suggest that the properties of oat flour produced on an industrial scale, including heat treatment, could be predicted based on the properties of native oat grains.

8.
Food Chem ; 358: 129917, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-33933973

ABSTRACT

There is controversy about the role of viscosity and co-migrating molecules on the bile acid binding of beta-glucan. Thus, this study aimed to investigate the impact of ß-glucan molecular weight and the content of both ß-glucan and phytate on the mobility of bile acids by modelling intestinal conditions in vitro. Two approaches were used to evaluate factors underlying this binding effect. The first studied bile acid binding capacity of soluble ß-glucan using purified compounds. Viscosity of the ß-glucan solution governed mainly the mobility of bile acid since both a decrease in ß-glucan concentration and degradation of ß-glucan by enzyme hydrolysis resulted in decreased binding. The second approach investigated the trapping of bile acids in the oat bran matrix. Results suggested trapping of bile acids by the ß-glucan gel network. Additionally, hydrolysis of phytate was shown to increase bile acid binding, probably due to better extractability of ß-glucan in this sample.


Subject(s)
Avena/chemistry , Bile Acids and Salts/metabolism , Phytic Acid/chemistry , beta-Glucans/chemistry , beta-Glucans/metabolism , Hydrolysis , Molecular Weight , Phytic Acid/analysis , Solubility , Viscosity , beta-Glucans/analysis
9.
Foods ; 9(11)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182660

ABSTRACT

The lack of certified reference materials has been one major challenge for gluten quantification in gluten-free products. In this study, the feasibility of using barley C-hordein as the calibrant for wheat gluten in R5 sandwich enzyme-linked immunosorbent assay (ELISA) was investigated. The gluten composition and total gluten R5 reactivity ranged largely depending on the genotypes and the growing environment. The conversion factor of gliadin to gluten averaged 1.31 for common wheat, which is smaller than the theoretical factor of 2. Each gluten group had varying reactivity against the R5 antibody, where ω1.2-, γ- and α-gliadins were the main reactive groups from wheat gluten. A mixture of wheat cultivars or one single cultivar as the reference material can be difficult to keep current. Based on the average R5 reactivity of total gluten from the 27 common wheat cultivars, here we proposed 10% C-hordein mixed with an inert protein as the calibrant for wheat gluten quantification. In spiking tests of gluten-free oat flour and biscuits, calibration using 10% C-hordein achieved the same recovery as the gliadin standard with its cultivar-specific conversion factor. For its good solubility and good affinity to the R5 antibody, the application of C-hordein increases the probability of developing a series of reference materials for various food matrices.

10.
Food Funct ; 11(7): 6680-6691, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32658235

ABSTRACT

The objective of this work was to evaluate the role of ß-glucan molecular weight (Mw) and the presence of other carbohydrates on the physiological functionality of oat bran via an in vitro digestion study. A complete approach using three different in vitro digestion models (viscosity of the small intestine digest, reduction of bile acids and on-line measurement of gas evolution) was used to predict the physiological functionality of enzymatically modified oat bran concentrate (OBC). OBC was enzymatically treated with two ß-glucanase preparations at three different levels in order to specifically decrease ß-glucan Mw (Pure: purified ß-glucanase) or ß-glucan and other cell wall polysaccharides (Mix: commercial food-grade cell wall degrading enzyme preparation). The Mw of ß-glucan in OBC was tailored to high (1000 kDa), medium (200-500 kDa) and low (<100 kDa) values. The amount of arabinoxylan-oligosaccharides varied from 0.3 to 4.7 g per 100 g of OBC when OBC was treated with the Mix enzyme at the highest dosage. When the enzymatically treated OBCs were studied in an upper gut model, a decrease in the viscosity of the digest simultaneously with the reduction of ß-glucan Mw was observed. At a similar ß-glucan Mw range, OBC samples treated with the Pure enzyme had lower viscosity than the samples treated with the Mix one, which also contained arabinoxylan-oligosaccharides. After enzymatic hydrolysis, the capacity of OBC to reduce bile acid was decreased regardless of the enzyme treatment used, and a positive correlation was found between ß-glucan Mw and bile acid reduction (r = 0.99**). The production of colonic gases by the enzymatically treated OBC samples in an in vitro colon model showed an inverse correlation between ß-glucan Mw and initial rate of gas formation (r = -0.9**), but no impact of arabinoxylan-oligosaccharides was observed. This study emphasised the complexity of factors affecting the functionality of oat components under physiological conditions and demonstrated the possibility to produce Mw-tailored oat fibre ingredients that could contribute to gut mediated health benefits.


Subject(s)
Avena/chemistry , Dietary Fiber/analysis , Food Handling/methods , Intestine, Large/metabolism , Intestine, Small/metabolism , beta-Glucans/chemistry , Bile Acids and Salts/analysis , Colon/metabolism , Digestion , Fermentation , Glycoside Hydrolases/metabolism , Molecular Weight , Oligosaccharides/analysis , Oligosaccharides/metabolism , Viscosity , Xylans/analysis , Xylans/metabolism , beta-Glucans/analysis , beta-Glucans/metabolism
11.
Foods ; 9(6)2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32517303

ABSTRACT

Faba bean protein has good functionalities, but it is little used in the food industry. This study identified a challenge from unfavourable starch gelation when utilizing faba bean for producing protein-based emulsion gel foods, and developed processing methods to overcome that. Two types of protein-based emulsion gel foods, namely yogurt and tofu analogue products, were prepared. The processing methods in this study involved steps of thermal pre-treatment of the beans, dehulling, milling, adding plant oil, homogenization, prevention of starch gelation, and inducing protein gelation. Two methods for preventing starch gelation were studied, namely starch removal and hydrolysis. The gel texture, water-holding capacity, and structural properties of the gel products were evaluated. Both starch-gelation prevention methods produced yogurt and tofu analogue products having typical emulsion gel properties. Hydrolysis of starch was favourable for producing the yogurt analogue, because the hydrolysate compounds improved the gel strength and viscosity. Moreover, it utilized the whole flour, meaning all the nutrients from the cotyledon were used and no side-stream was created. In contrast, starch removal was slightly better than hydrolysis for producing the tofu analogue, because the hydrolysate lowered the gel strength and water-holding capacity of the products. It is both possible and ecologically sustainable to utilize whole faba bean flour for making emulsion gel products.

12.
Food Sci Nutr ; 6(4): 1032-1039, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29983967

ABSTRACT

The course of protein-lipid co-oxidation was investigated in oil-in-water emulsions stabilized with proteins extracted from microwave-treated (MWT) and conventional thermal-treated (CTT) faba beans stored at 37°C for 7 days. Emulsions prepared with proteins from untreated (UT) faba beans and soy protein isolate (SP) were monitored for comparison. Lipid oxidation was detected through formation of primary and secondary oxidation products while protein oxidation was examined via tryptophan fluorescence degradation in interface and aqueous phase. Oxidation of proteins was more emphasized in the interfacial layers of MWT, CTT, and SP emulsions than in UT emulsions due to the prominence of radical chain-driven co-oxidation mechanism while lipoxygenase (LOX) activity in UT and MWT emulsions resulted in high amounts of hydroperoxides and abundance in lipid oxidation volatiles. Conventional thermal treatment provided better oxidative stability than microwave treatment reflected in lower levels of hydroperoxides and relative lack of diversity in lipid volatiles. Among detected volatiles, formation of ketones was more distinguished in MWT, CTT, and SP emulsions while UT emulsions contained a more diverse range of alkenals and alkanals. Ketones are known to form mainly through radical recombination reactions which combined with the results of protein oxidation supports that radical transfer reactions between proteins and lipids were the driving force behind oxidation in MWT, CTT, and SP emulsions. Treatments of faba beans resulted in increased oxidative stability of emulsified lipids and lower degradation of aqueous phase proteins.

13.
Nutrients ; 9(11)2017 Nov 04.
Article in English | MEDLINE | ID: mdl-29113045

ABSTRACT

Many patients suspect wheat as being a major trigger of their irritable bowel syndrome (IBS) symptoms. Our aim was to evaluate whether sourdough wheat bread baked without baking improvers and using a long dough fermentation time (>12 h), would result in lower quantities of alpha-amylase/trypsin inhibitors (ATIs) and Fermentable, Oligo-, Di-, Mono-saccharides and Polyols (FODMAPs), and would be better tolerated than yeast-fermented wheat bread for subjects with IBS who have a poor subjective tolerance to wheat. The study was conducted as a randomised double-blind controlled 7-day study (n = 26). Tetrameric ATI structures were unravelled in both breads vs. baking flour, but the overall reduction in ATIs to their monomeric form was higher in the sourdough bread group. Sourdough bread was also lower in FODMAPs. However, no significant differences in gastrointestinal symptoms and markers of low-grade inflammation were found between the study breads. There were significantly more feelings of tiredness, joint symptoms, and decreased alertness when the participants ate the sourdough bread (p ≤ 0.03), but these results should be interpreted with caution. Our novel finding was that sourdough baking reduces the quantities of both ATIs and FODMAPs found in wheat. Nonetheless, the sourdough bread was not tolerated better than the yeast-fermented bread.


Subject(s)
Bread/analysis , Irritable Bowel Syndrome/etiology , Saccharomyces cerevisiae/metabolism , Triticum/chemistry , Wheat Hypersensitivity , Adult , Female , Fermentation , Flour/analysis , Humans , Male , Middle Aged , Pilot Projects , Young Adult
14.
Carbohydr Polym ; 175: 377-386, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28917879

ABSTRACT

New wheat arabinoxylan and konjac glucomannan hydrogels and aerogels were prepared by hemiacetal crosslinking induced by laccase/TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) -catalysed oxidation, which selectively converts the primary hydroxyl groups to aldehydes. The degree of oxidation of the product aldehydes was ca. 10% of the total carbohydrates of the polysaccharides, and the determination of storage and viscous moduli of the oxidised samples showed that they had formed true hydrogels. Two freezing methods for the hydrogels, conventional freezing and ice crystal templating, were investigated for aerogel production, the ice crystal templated products especially were mechanically strong in compression test against the ice crystals' growth direction. The compressive moduli were ca. 1200kPa for wheat arabinoxylan aerogels and ca. 650kPa for konjac glucomannan aerogels. A morphological study with a scanning electron microscope revealed the inner structure of the aerogels. Ice crystal templated konjac glucomannan aerogel formed round pores with a diameter of ca. 50-100µm. The arabinoxylan aerogel consisted of long and narrow pores with a length of a few hundred µm and width of 50-100µm, which had formed in the direction of the ice crystals' formation. Konjac glucomannan and wheat arabinoxylan are approved food-grade materials, and wheat arabinoxylan is particularly interesting because it can be obtained from cereal processing side streams - thus, these novel products have potential in various applications, including the food, food packaging, and pharmacological fields.

15.
Carbohydr Polym ; 169: 220-226, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28504139

ABSTRACT

This study investigated the role of phytate in the Fenton reaction induced oxidative degradation of cereal ß-glucan. Viscosity analysis showed that the degradation rate was high in the beginning of oxidation, which fitted to the second order kinetic model. Oat ß-glucan contained significant amount of residual phytate and after the residual phytate was removed, faster degradation was shown compared to the original oat ß-glucan. Adding the same amount of phytic acid (PA) to the phytate removed ß-glucan sample also retarded the degradation but not as efficiently as the residual phytate. Considerable retardation of viscosity loss was shown when the PA to iron ratio was high. The presence of ascorbic acid weakened the retardation effect of phytic acid. Thus, phytate can significantly improve the oxidative stability of ß-glucan when the ratio of phytic acid to transition metals and the presence of ascorbic acid are taken into consideration.


Subject(s)
Avena/chemistry , Edible Grain/chemistry , Phytic Acid/chemistry , beta-Glucans/metabolism , Oxidation-Reduction
17.
J Agric Food Chem ; 65(10): 2155-2161, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28233493

ABSTRACT

The concentration of residual barley prolamin (hordein) in gluten-free products is overestimated by the R5 ELISA method when calibrated against the wheat gliadin standard. The reason for this may be that the composition of the gliadin standard is different from the composition of hordeins. This study showed that the recognition of whole hordein by R5 antibody mainly came from C-hordein, which is more reactive than the other hordeins. The proportion of C-hordein in total hordein ranged from 16 to 33% of common Finnish barley cultivars used in this study and was always higher than that of ω-gliadin, the homologous protein class in the gliadin standard, which may account for the overestimation. Thus, a hordein standard is needed for barley prolamin quantification instead of the gliadin standard. When gluten-free oat flour was spiked with barley flour, the prolamin concentration was overestimated 1.8-2.5 times with the gliadin standard, whereas estimates in the correct range were obtained when the standard was 40% C-hordein mixed with an inert protein. A preparative-scale method was developed to isolate and purify C-hordein, and C-hordein is proposed as a reference material to calibrate barley prolamin quantification in R5-based assays.


Subject(s)
Enzyme-Linked Immunosorbent Assay/standards , Glutens/analysis , Calibration , Hordeum/chemistry , Reference Standards , Triticum/chemistry
18.
Carbohydr Polym ; 157: 1769-1776, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27987894

ABSTRACT

Oxidation of cereal ß-glucans may affect their stability in food products. Generally, polysaccharides oxidise via different pathways leading to chain cleavage or formation of oxidised groups within the polymer chain. In this study, oxidation pathways of oat and barley ß-glucans were assessed with different concentrations of hydrogen peroxide (H2O2) or ascorbic acid (Asc) with ferrous iron (Fe2+) as a catalyst. Degradation of ß-glucans was evaluated using high performance size exclusion chromatography and formation of carbonyl groups using carbazole-9-carbonyloxyamine labelling. Furthermore, oxidative degradation of glucosyl residues was studied. Based on the results, the oxidation with Asc mainly resulted in glycosidic bond cleavage. With H2O2, both glycosidic bond cleavage and formation of carbonyl groups within the ß-glucan chain was found. Moreover, H2O2 oxidation led to production of formic acid, which was proposed to result from Ruff degradation where oxidised glucose (gluconic acid) is decarboxylated to form arabinose.


Subject(s)
Avena/metabolism , Hordeum/metabolism , beta-Glucans/metabolism , Ascorbic Acid , Edible Grain/metabolism , Hydrogen Peroxide , Oxidation-Reduction
19.
Food Chem ; 214: 597-605, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27507515

ABSTRACT

Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum vulgare L.). We established a multiple reaction monitoring (MRM) LC-MS method to detect and quantify proline oxidation fragments. In addition to fragmentation, aggregation and side chain modifications were identified, including free thiol loss, carbonyl formation, and dityrosine formation. The immunoreactivity of the oxidized hordein isolate was considerably decreased in all metal-catalyzed oxidation systems. Cleavage of peptides or protein fragments at the numerous proline residues partially accounts for the decrease. Metal-catalyzed oxidation can thus be used in the modification and elimination of celiac-toxic peptides and proteins.


Subject(s)
Glutens/chemistry , Hordeum/chemistry , Proline/chemistry , Oxidation-Reduction
20.
Food Chem ; 196: 1256-63, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26593614

ABSTRACT

C-hordein is a monomeric prolamin protein in barley. The unusual primary structure of C-hordein has highly repetitive sequences and forms a secondary structure of beta-turns. C-hordein structure is similar to that of collagen protein, whose degradation by metal-catalysed oxidation has been intensively studied. No information exists on the metal catalysed oxidation of C-hordein, however. In this study, copper-catalysed hydrogen peroxide induced oxidation of C-hordein caused substantial degradation and formed some insoluble compounds. The use of a gliadin standard in R5 ELISA determinations causes an overestimation of hordeins in a sample. A C-hordein standard was therefore directly used as a standard, thus allowing the C-hordein to be analysed as its oxidised prolamin product. After 48 h of oxidation, the prolamin concentration of oxidised C-hordein decreased to 20% of its original amount for competitive ELISA, and to 3% for sandwich ELISA methods. Carbonyl groups were formed during the oxidation. Backbone fragmentation and side-chain modification suggested structural changes of R5 epitopes in C-hordein. Oxidation is an alternative to enzymatic hydrolysis when degrading and modifying C-hordein.


Subject(s)
Glutens/chemistry , Hordeum/chemistry , Metals/chemistry , Catalysis , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...