Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Theranostics ; 7(1): 23-30, 2017.
Article in English | MEDLINE | ID: mdl-28042313

ABSTRACT

The blood-brain barrier (BBB) is a major obstacle in drug delivery for diseases of the brain, and today there is no standardized route to surpass it. One technique to locally and transiently disrupt the BBB, is focused ultrasound in combination with gas-filled microbubbles. However, the microbubbles used are typically developed for ultrasound imaging, not BBB disruption. Here we describe efficient opening of the BBB using the promising novel Acoustic Cluster Therapy (ACT), that recently has been used in combination with Abraxane® to successfully treat subcutaneous tumors of human prostate adenocarcinoma in mice. ACT is based on the conjugation of microbubbles to liquid oil microdroplets through electrostatic interactions. Upon activation in an ultrasound field, the microdroplet phase transfers to form a larger bubble that transiently lodges in the microvasculature. Further insonation induces volume oscillations of the activated bubble, which in turn induce biomechanical effects that increase the permeability of the BBB. ACT was able to safely and temporarily permeabilize the BBB, using an acoustic power 5-10 times lower than applied for conventional microbubbles, and successfully deliver small and large molecules into the brain.


Subject(s)
Blood-Brain Barrier/physiology , Blood-Brain Barrier/radiation effects , Drug Delivery Systems/methods , Permeability/radiation effects , Sonication/methods , Ultrasonic Waves , Animals , Mice , Microbubbles , Oils
2.
Pharmacol Res Perspect ; 4(6): e00274, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28097007

ABSTRACT

Acoustic Cluster Therapy (ACT) represents a novel concept for targeted drug delivery. Ultrasound is applied to activate intravenously administered free-flowing clusters of microbubbles and microdroplets within the target pathology, depositing 20-30 µm large bubbles in the microvasculature for 5-10 min. Further application of ultrasound induces biomechanical effects which increase vascular permeability and enhance localized extravasation of coadministered drugs. Herein we report investigations done to assess the preclinical safety of ACT, using doses up to 1 mL/kg (3 µL perfluoromethyl-cyclopentane/kg). In dogs, half the animals were exposed to ultrasound activation in the heart for 1 min, no ultrasound was applied in the other half. Posttreatment observation time was 24 h. Clinical signs, ophthalmoscopy, clinical pathology, macro-, and microscopy were used as endpoints. No differences between groups with and without ultrasound activation were observed. Short-lasting leukopenia and thrombocytopenia, possibly secondary to a slight and short-lasting increase in plasma histamine and complement split products, were the only effects noted. In rats ACT was activated in the liver for 5 min. Histopathology and clinical chemistry parameters remained unchanged. Lastly, rats were treated with ACT activated in the heart and thereafter placed on a rotarod for evaluation of motor coordination. No differences were observed between animals treated with ACT and controls. In conclusion, ACT appeared safe at dose-levels up to 1 mL/kg and with activation either in the heart or the liver. These results, together with positive efficacy data upon coinjection with cytotoxic compounds encourage further preclinical safety studies with the objective of entering subsequent clinical trials.

SELECTION OF CITATIONS
SEARCH DETAIL
...