Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 683694, 2021.
Article in English | MEDLINE | ID: mdl-34630379

ABSTRACT

Auranofin is an FDA-approved disease-modifying anti-rheumatic drug that has been used for decades for treatment of rheumatoid arthritis. This gold(I) compound has anti-inflammatory properties because it reduces IL-6 expression via inhibition of the NF-κB-IL-6-STAT3 signaling pathway. Also, by inhibiting redox enzymes such as thioredoxin reductase, auranofin increases cellular oxidative stress and promotes apoptosis. Auranofin also possesses antiviral properties. Recently, it was reported that auranofin reduced by 95% SARS-CoV-2 RNA in infected human cells in vitro and decreased SARS-CoV-2-induced cytokine expression, including IL-6. During SARS-CoV-2 infection, a cytokine storm involving IL-6 increases severity of illness and worsens prognosis. Therefore, auranofin could, in our point of view, reduce pathology due to SARS-CoV-2-induced IL-6. COVID-19 is a rapidly-evolving respiratory disease now distributed worldwide. Strikingly high numbers of new COVID-19 cases are reported daily. We have begun a race to vaccinate people, but due to the complex logistics of this effort, the virus will continue to spread before all humans can be immunized, and new variants that may be less well contained by current vaccines are of concern. The COVID-19 pandemic has overwhelmed health care systems and new treatments to reduce mortality are urgently needed. We encourage to further evaluate the potential of auranofin in the treatment of COVID-19 in vitro and in animal models of SARS-CoV-2 infection and, if preliminary data are promising, in clinical trials with COVID-19 patients. In our opinion, auranofin has the potential to become a valuable addition to available therapies in this pandemic.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , Auranofin/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/physiology , Cytokine Release Syndrome , Drug Approval , Humans , Interleukin-6/metabolism , Thioredoxins/metabolism
2.
Methods Mol Biol ; 2052: 229-251, 2020.
Article in English | MEDLINE | ID: mdl-31452166

ABSTRACT

Cryptosporidiosis threatens life of young children in developing countries and newborn calves around the world. No vaccine or therapy can prevent or cure this diarrhea-inducing enteric disease caused by Cryptosporidium spp. protozoan parasites. There is an essential need to discover new therapeutic drugs efficient in reducing parasite burden in infected individuals. Research therefore relies on reliable small animal models of cryptosporidiosis. Here, we present excellent mouse models which can efficiently mimic pathogenesis of human and bovine cryptosporidiosis. We also describe methods to purify C. parvum oocysts from stool and intestine of infected mice to facilitate oocyst quantification. Moreover, we present protocols using flow cytometry, quantitative polymerase chain reaction, and histopathology to accurately quantify parasite burden in stool or intestine samples.


Subject(s)
Cryptosporidiosis/parasitology , Cryptosporidium parvum/isolation & purification , Oocysts/isolation & purification , Animals , Cryptosporidiosis/pathology , Cryptosporidium , Cryptosporidium parvum/growth & development , Disease Models, Animal , Feces/parasitology , Flow Cytometry/methods , Ileum/cytology , Ileum/parasitology , Ileum/pathology , Interleukin-12/genetics , Mice , Mice, Knockout , Mice, SCID , Oocysts/growth & development , Real-Time Polymerase Chain Reaction/methods , Receptors, Interferon/genetics , Workflow , Interferon gamma Receptor
3.
PLoS Negl Trop Dis ; 13(3): e0007259, 2019 03.
Article in English | MEDLINE | ID: mdl-30893302

ABSTRACT

Cryptosporidiosis caused by the protozoan parasites Cryptosporidium hominis and C. parvum, threatens the lives of young children in developing countries. In veterinary medicine, C. parvum causes life-threatening diarrhea and dehydration in newborn dairy calves. Protocols to detect Cryptosporidium spp. oocysts using flow cytometry have been reported; however, these protocols use antibodies against the parasite and typically focus on detection of oocysts, not quantification. These techniques are not well-suited for studies that generate large variations in oocyst burdens because the amount of antibody required is proportional to the number of oocysts expected in samples. Also, oocysts are lost in washes in the staining protocol, reducing accuracy of oocyst counts. Moreover, these protocols require costly fluorochrome-conjugated monoclonal antibodies and are not optimal for studies involving large numbers of samples. Here we present an optimized protocol for purifying oocysts from mouse stool and intestine samples combined with a reliable method to quantify oocysts in a relatively pure population without the need for antibody staining. We used morphology (SSC-A vs FSC-A) and the innate characteristics of C. parvum oocysts compared to fecal and intestinal contaminants to develop a two-step gating strategy that can differentiate oocysts from debris. This method is a fast, reliable, and high-throughput technique to promote research projects on C. parvum infections in mice and potentially other animal hosts.


Subject(s)
Cryptosporidiosis/parasitology , Cryptosporidium/isolation & purification , Flow Cytometry/methods , Oocysts/isolation & purification , Parasite Load/methods , Animals , Disease Models, Animal , Feces/parasitology , Mice, Inbred C57BL
4.
Pathogens ; 7(1)2017 Dec 24.
Article in English | MEDLINE | ID: mdl-29295550

ABSTRACT

In developing countries, cryptosporidiosis causes moderate-to-severe diarrhea and kills thousands of infants and toddlers annually. Drinking and recreational water contaminated with Cryptosporidium spp. oocysts has led to waterborne outbreaks in developed countries. A competent immune system is necessary to clear this parasitic infection. A better understanding of the immune responses required to prevent or limit infection by this protozoan parasite is the cornerstone of development of an effective vaccine. In this light, lessons learned from previously developed vaccines against Cryptosporidium spp. are at the foundation for development of better next-generation vaccines. In this review, we summarize the immune responses elicited by naturally and experimentally-induced Cryptosporidium spp. infection and by several experimental vaccines in various animal models. Our aim is to increase awareness about the immune responses that underlie protection against cryptosporidiosis and to encourage promotion of these immune responses as a key strategy for vaccine development. Innate and mucosal immunity will be addressed as well as adaptive immunity, with an emphasis on the balance between TH1/TH2 immune responses. Development of more effective vaccines against cryptosporidiosis is needed to prevent Cryptosporidium spp.-related deaths in infants and toddlers in developing countries.

5.
Front Microbiol ; 6: 973, 2015.
Article in English | MEDLINE | ID: mdl-26441906

ABSTRACT

Cryptosporidium parvum is a species of protozoa that causes cryptosporidiosis, an intestinal disease affecting many mammals including humans. Typically, in healthy individuals, cryptosporidiosis is a self-limiting disease. However, C. parvum can cause a severe and persistent infection that can be life-threatening for immunocompromised individuals, such as AIDS patients. As there are no available treatments for these patients that can cure the disease, there is an urgent need to identify treatment options. We tested the anti-parasitic activity of the alkylphosphocholine oleylphosphocholine (OlPC), an analog of miltefosine, against C. parvum in in vitro and in vivo studies. In vitro experiments using C. parvum infected human ileocecal adenocarcinoma cells (HCT-8 cells) showed that OlPC has an EC50 of 18.84 nM. Moreover, no cell toxicity has been seen at concentrations ≤50 µM. C57BL/6 interferon gamma receptor knock-out mice, were infected by gavage with 4000 C. parvum oocysts on Day 0. Oral treatments, with OlPC, miltefosine, paromomycin or PBS, began on Day 3 post-infection for 10 days. Treatment with OlPC, at 40 mg/kg/day resulted in 100% survival, complete clearance of parasite in stools and a 99.9% parasite burden reduction in the intestines at Day 30. Doses of 30 and 20 mg/kg/day also demonstrated an increased survival rate and a dose-dependent parasite burden reduction. Mice treated with 10 mg/kg/day of miltefosine resulted in 50% survival at Day 30. In contrast, control mice, treated with PBS or 100 mg/kg/day of paromomycin, died or had to be euthanized between Days 6 and 13 due to severe illness. Results of parasite burden were obtained by qPCR and cross-validated by both flow cytometry of stool oocysts and histological sections of the ileum. Together, our results strongly support that OlPC represents a potential candidate for the treatment of C. parvum infections in immunocompromised patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...