Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 725: 150261, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897040

ABSTRACT

GOAL: The long-term goal of our research is to develop safe and effective soluble epoxide hydrolase (sEH) inhibitors. The objective of this study is to evaluate the potency and selectivity of six natural isothiocyanates (ITCs) as sEH inhibitors. METHODS: Molecular docking was used to model likely interactions between the ligands and receptors. The sEH inhibitory activity was tested using a validated fluorescence-based assay and PHOME as a substrate. To evaluate their selectivity as sEH inhibitors, the inhibitory potential of the ITCs was determined on microsomal epoxide hydrolase (mEH) and cytochrome P450 (CYP) enzymes in human liver microsomes. Probe substrates such as styrene oxide (mEH substrate) and established substrates for CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A4 were used in this study. The metabolites of these substrates were analyzed using validated LC-MS/MS and HPLC-UV assays. RESULTS: Molecular Docking revealed significant differences in binding site preference among the ITCs in silico and pointed to important interactions between the ligands and the catalytic residues of the sEH enzyme. In vitro, the ITCs showed varying degrees of sEH inhibition, but sulforaphane (SFN) and phenyl isothiocyanate (PITC) were the most potent inhibitors with IC50 values of 3.65 and 7.5 µM, respectively. mEH was not significantly inhibited by any of the ITCs. Erucin and iberin were the only ITCs that did not inhibit the activity of any of the tested CYP enzymes. CONCLUSION: Our results demonstrate that natural ITCs have the potential to offer safe, selective, and potent sEH inhibition.


Subject(s)
Enzyme Inhibitors , Epoxide Hydrolases , Isothiocyanates , Microsomes, Liver , Molecular Docking Simulation , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/chemistry , Isothiocyanates/pharmacology , Isothiocyanates/chemistry , Isothiocyanates/metabolism , Humans , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Microsomes, Liver/drug effects , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...