Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 41(5): 111571, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36323262

ABSTRACT

The nucleolar surveillance pathway monitors nucleolar integrity and responds to nucleolar stress by mediating binding of ribosomal proteins to MDM2, resulting in p53 accumulation. Inappropriate pathway activation is implicated in the pathogenesis of ribosomopathies, while drugs selectively activating the pathway are in trials for cancer. Despite this, the molecular mechanism(s) regulating this process are poorly understood. Using genome-wide loss-of-function screens, we demonstrate the ribosome biogenesis axis as the most potent class of genes whose disruption stabilizes p53. Mechanistically, we identify genes critical for regulation of this pathway, including HEATR3. By selectively disabling the nucleolar surveillance pathway, we demonstrate that it is essential for the ability of all nuclear-acting stresses, including DNA damage, to induce p53 accumulation. Our data support a paradigm whereby the nucleolar surveillance pathway is the central integrator of stresses that regulate nuclear p53 abundance, ensuring that ribosome biogenesis is hardwired to cellular proliferative capacity.


Subject(s)
Proto-Oncogene Proteins c-mdm2 , Tumor Suppressor Protein p53 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Proto-Oncogene Proteins c-mdm2/genetics , Proto-Oncogene Proteins c-mdm2/metabolism , Signal Transduction/genetics , Cell Nucleolus/metabolism , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
2.
Assay Drug Dev Technol ; 16(6): 320-332, 2018.
Article in English | MEDLINE | ID: mdl-30148664

ABSTRACT

The nucleolus is a dynamic subnuclear compartment that has a number of different functions, but its primary role is to coordinate the production and assembly of ribosomes. For well over 100 years, pathologists have used changes in nucleolar number and size to stage diseases such as cancer. New information about the nucleolus' broader role within the cell is leading to the development of drugs which directly target its structure as therapies for disease. Traditionally, it has been difficult to develop high-throughput image analysis pipelines to measure nucleolar changes due to the broad range of morphologies observed. In this study, we describe a simple high-content image analysis algorithm using Harmony software (PerkinElmer), with a PhenoLOGIC™ machine-learning component, that can measure and classify three different nucleolar morphologies based on nucleolin and fibrillarin staining ("normal," "peri-nucleolar rings" and "dispersed"). We have utilized this algorithm to determine the changes in these classes of nucleolar morphologies over time with drugs known to alter nucleolar structure. This approach could be further adapted to include other parameters required for the identification of new therapies that directly target the nucleolus.


Subject(s)
Cell Nucleolus/pathology , High-Throughput Screening Assays , A549 Cells , Algorithms , Cell Nucleolus/metabolism , Humans , Machine Learning , Oxidative Stress , Software , Tumor Cells, Cultured
3.
Sci Rep ; 6: 25060, 2016 04 26.
Article in English | MEDLINE | ID: mdl-27112985

ABSTRACT

Plasmacytoid dendritic cells (pDCs) play an important role in immunity to certain pathogens and immunopathology in some autoimmune diseases. They are thought to have a longer lifespan than conventional DCs (cDCs), largely based on a slower rate of BrdU labeling by splenic pDCs. Here we demonstrated that pDC expansion and therefore BrdU labeling by pDCs occurs in bone marrow (BM). The rate of labeling was similar between BM pDCs and spleen cDCs. Therefore, slower BrdU labeling of spleen pDCs likely reflects the "migration time" (∼2 days) for BrdU labeled pDCs to traffic to the spleen, not necessarily reflecting longer life span. Tracking the decay of differentiated DCs showed that splenic pDCs and cDCs decayed at a similar rate. We suggest that spleen pDCs have a shorter in vivo lifespan than estimated utilizing some of the previous approaches. Nevertheless, pDC lifespan varies between mouse strains. pDCs from lupus-prone NZB mice survived longer than C57BL/6 pDCs. We also demonstrated that activation either positively or negatively impacted on the survival of pDCs via different cell-death mechanisms. Thus, pDCs are also short-lived. However, the pDC lifespan is regulated by genetic and environmental factors that may have pathological consequence.


Subject(s)
Bone Marrow Cells/cytology , Dendritic Cells/cytology , Spleen/cytology , Animals , Bone Marrow Cells/metabolism , Bromodeoxyuridine/metabolism , Cell Differentiation , Cell Movement , Cell Survival , Cells, Cultured , Dendritic Cells/metabolism , Mice , Spleen/metabolism
4.
Proc Natl Acad Sci U S A ; 112(13): 4044-9, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25775525

ABSTRACT

Dendritic cells (DCs) are heterogeneous, comprising subsets with functional specializations that play distinct roles in immunity as well as immunopathology. We investigated the molecular control of cell survival of two main DC subsets: plasmacytoid DCs (pDCs) and conventional DCs (cDCs) and their dependence on individual antiapoptotic BCL-2 family members. Compared with cDCs, pDCs had higher expression of BCL-2, lower A1, and similar levels of MCL-1 and BCL-XL. Transgenic overexpression of BCL-2 increased the pDC pool size in vivo with only minor impact on cDCs. With a view to immune intervention, we tested BCL-2 inhibitors and found that ABT-199 (the BCL-2 specific inhibitor) selectively killed pDCs but not cDCs. Conversely, genetic knockdown of A1 profoundly reduced the proportion of cDCs but not pDCs. We also found that conditional ablation of MCL-1 significantly reduced the size of both DC populations in mice and impeded DC-mediated immune responses. Thus, we revealed that the two DC types have different cell survival requirements. The molecular basis of survival of different DC subsets thus advocates the antagonism of selective BCL-2 family members for treating diseases pertaining to distinct DC subsets.


Subject(s)
Apoptosis , Dendritic Cells/cytology , Proto-Oncogene Proteins c-bcl-2/metabolism , Animals , Cell Separation , Cell Survival , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Signal Transduction , Spleen/immunology , Spleen/metabolism , T-Lymphocytes/cytology , Transgenes , bcl-X Protein/metabolism
5.
J Mol Biol ; 427(10): 1934-48, 2015 May 22.
Article in English | MEDLINE | ID: mdl-25765764

ABSTRACT

We have expressed and purified three soluble fragments of the human LRIG1-ECD (extracellular domain): the LRIG1-LRR (leucine-rich repeat) domain, the LRIG1-3Ig (immunoglobulin-like) domain, and the LRIG1-LRR-1Ig fragment using baculovirus vectors in insect cells. The two LRIG1 domains crystallised so that we have been able to determine the three-dimensional structures at 2.3Å resolution. We developed a three-dimensional structure for the LRIG1-ECD using homology modelling based on the LINGO-1 structure. The LRIG1-LRR domain and the LRIG1-LRR-1Ig fragment are monomers in solution, whereas the LRIG1-3Ig domain appears to be dimeric. We could not detect any binding of the LRIG1 domains or the LRIG1-LRR-1Ig fragment to the EGF receptor (EGFR), either in solution using biosensor analysis or when the EGFR was expressed on the cell surface. The FLAG-tagged LRIG1-LRR-1Ig fragment binds weakly to colon cancer cells regardless of the presence of EGFRs. Similarly, neither the soluble LRIG1-LRR nor the LRIG1-3Ig domains nor the full-length LRIG1 co-expressed in HEK293 cells inhibited ligand-stimulated activation of cell-surface EGFR.


Subject(s)
ErbB Receptors/chemistry , ErbB Receptors/metabolism , Extracellular Matrix/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Biosensing Techniques , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Crystallography, X-Ray , HEK293 Cells , Humans , Leucine-Rich Repeat Proteins , Ligands , Microscopy, Fluorescence , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Proteins/chemistry , Proteins/metabolism , Structure-Activity Relationship , Surface Plasmon Resonance , Tumor Cells, Cultured
6.
PLoS One ; 6(5): e19665, 2011.
Article in English | MEDLINE | ID: mdl-21611124

ABSTRACT

Female-controlled contraception/HIV prevention is critical to address health issues associated with gender inequality. Therefore, a contraceptive which can be administered in tandem with a microbicide to inhibit sexually transmitted infections, is desirable. Uterine leukemia inhibitory factor (LIF) is obligatory for blastocyst implantation in mice and associated with infertility in women. We aimed to determine whether a PEGylated LIF inhibitor (PEGLA) was an effective contraceptive following vaginal delivery and to identify non-uterine targets of PEGLA in mice.Vaginally-applied (125)I-PEGLA accumulated in blood more slowly (30 min vs 10 min) and showed reduced tissue and blood retention (24 h vs 96 h) compared to intraperitoneal injection in mice. Vaginally-applied PEGLA blocked implantation. PEGLA administered by intraperitoneal injection inhibited bone remodelling whereas vaginally-applied PEGLA had no effect on bone. Further, PEGLA had no effect in an animal model of multiple sclerosis, experimental auto-immune encephalomyelitis, suggesting PEGLA cannot target the central nervous system.Vaginally-administered PEGLA is a promising non-hormonal contraceptive, one which could be delivered alone, or in tandem with a microbicide. Vaginal application reduced the total dose of PEGLA required to block implantation and eliminated the systemic effect on bone, showing the vagina is a promising site of administration for larger drugs which target organs within the reproductive tract.


Subject(s)
Bone and Bones/drug effects , Embryo Implantation/drug effects , Leukemia Inhibitory Factor/antagonists & inhibitors , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacology , Administration, Intravaginal , Animals , Bone Remodeling/drug effects , Bone and Bones/physiology , Central Nervous System/drug effects , Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Epithelium/drug effects , Epithelium/metabolism , Female , Fertility/drug effects , Half-Life , Injections, Intraperitoneal , Iodine Radioisotopes , Leukemia Inhibitory Factor/administration & dosage , Leukemia Inhibitory Factor/pharmacology , Male , Mice , Mice, Inbred C57BL , Protein Transport/drug effects , Reproduction/drug effects , Uterus/drug effects , Uterus/metabolism
7.
J Biol Chem ; 285(28): 21214-8, 2010 Jul 09.
Article in English | MEDLINE | ID: mdl-20489211

ABSTRACT

gp130 is the shared signal-transducing receptor subunit for the large and important family of interleukin 6-like cytokines. Previous x-ray structures of ligand-receptor complexes of this family lack the three membrane-proximal domains that are essential for signal transduction. Here we report the crystal structure of the entire extracellular portion of human gp130 (domains 1-6, D1-D6) at 3.6 A resolution, in an unliganded form, as well as a higher resolution structure of the membrane-proximal fibronectin type III domains (D4-D6) at 1.9 A. This represents the first atomic resolution structure of the complete ectodomain of any "tall" cytokine receptor. These structures show that other than a reorientation of the D1 domain, there is little structural change in gp130 upon ligand binding. They also reveal that the interface between the D4 and D5 domains forms an acute bend in the gp130 structure. Key residues at this interface are highly conserved across the entire tall receptor family, suggesting that this acute bend may be a common feature of these receptors. Importantly, this geometry positions the C termini of the membrane-proximal fibronectin type III domains of the tall cytokine receptors in close proximity within the transmembrane complex, favorable for receptor-associated Janus kinases to trans-phosphorylate and activate each other.


Subject(s)
Interleukin-6/chemistry , Neural Cell Adhesion Molecules/chemistry , Contactins , Crystallography, X-Ray/methods , Cytokines/metabolism , Dimerization , Fibronectins/chemistry , Humans , Ligands , Molecular Conformation , Phosphorylation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Signal Transduction , Structure-Activity Relationship
8.
Exp Cell Res ; 313(20): 4091-106, 2007 Dec 10.
Article in English | MEDLINE | ID: mdl-18028908

ABSTRACT

LIM kinase 1 (LIMK1) is a key regulator of actin dynamics as it phosphorylates and inactivates cofilin, an actin-depolymerizing factor. LIMK1 activity is also required for microtubule disassembly in endothelial cells. A search for LIMK1-interacting proteins identified p25alpha, a phosphoprotein that promotes tubulin polymerization. We found that p25 is phosphorylated by LIMK1 on serine residues in vitro and in cells. Immunoblotting analysis revealed that p25 is not a brain specific protein as previously reported, but is expressed in all mouse tissues. Immunofluorescence analysis demonstrated that endogenous p25 is co-localized with microtubules and is also found in the nucleus. Down-regulation of p25 by siRNA decreased microtubule levels while its overexpression in stable NIH-3T3 cell lines increased cell size and levels of stable tubulin. Bacterially expressed unphosphorylated p25 promotes microtubule assembly in vitro; however, when phosphorylated in cells, p25 lost its ability to assemble microtubule. Our results represent a surprising connection between the tubulin and the actin cytoskeleton mediated by LIMK1. We propose that the LIMK1 phosphorylation of p25 blocks p25 activity, thus promoting microtubule disassembly.


Subject(s)
Lim Kinases/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , Animals , Cell Size , Down-Regulation , HeLa Cells , Humans , Immunohistochemistry , Lim Kinases/chemistry , Mice , Models, Biological , NIH 3T3 Cells , Organ Specificity , Phosphorylation , Phosphoserine/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , Recombinant Fusion Proteins/metabolism , Sheep , Subcellular Fractions/metabolism , Substrate Specificity , Tubulin/metabolism
9.
J Histochem Cytochem ; 54(5): 487-501, 2006 May.
Article in English | MEDLINE | ID: mdl-16399995

ABSTRACT

The LIM kinase family includes two proteins: LIMK1 and LIMK2. These proteins have identical genomic structure and overall amino acid identity of 50%. Both proteins regulate actin polymerization via phosphorylation and inactivation of the actin depolymerizing factors ADF/cofilin. Although the function of endogenous LIMK1 is well established, little is known about the function of the endogenous LIMK2 protein. To understand the specific role of endogenous LIMK2 protein, we examined its expression in embryonic and adult mice using a rat monoclonal antibody, which recognizes specifically the PDZ domain of LIMK2 but not that of LIMK1. Immunoblotting and immunoprecipitation analyses of mouse tissues and human and mouse cell lines revealed widespread expression of the 75-kDa LIMK2 protein. Immunofluorescence analysis demonstrated that the cellular localization of LIMK2 is different from that of LIMK1. LIMK2 protein is found in the cytoplasm localized to punctae and is not enriched within focal adhesions like LIMK1. Immunohistochemical studies revealed that LIMK2 is widely expressed in embryonic and adult mouse tissues and that its expression pattern is similar to that of LIMK1 except in the testes. We have also demonstrated that endogenous LIMK1 and LIMK2 form heterodimers, and that LIMK2 does not always interact with the same proteins as LIMK1.


Subject(s)
DNA-Binding Proteins/biosynthesis , Protein Kinases/biosynthesis , Animals , Antibodies, Monoclonal , Antibody Specificity , Cell Line , Chlorocebus aethiops , DNA-Binding Proteins/immunology , Golgi Apparatus/metabolism , Humans , Immunoblotting , Immunohistochemistry , Immunoprecipitation , Lim Kinases , Mice , Organ Specificity , Protein Kinases/immunology , Protein Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...