Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Type of study
Publication year range
1.
mBio ; 15(2): e0337023, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38259066

ABSTRACT

The anaerobic gut fungi (AGF) inhabit the alimentary tracts of herbivores. In contrast to placental mammals, information regarding the identity, diversity, and community structure of AGF in marsupials is extremely sparse. Here, we characterized AGF communities in 61 fecal samples from 10 marsupial species belonging to four families in the order Diprotodontia: Vombatidae (wombats), Phascolarctidae (koalas), Phalangeridae (possums), and Macropodidae (kangaroos, wallabies, and pademelons). An amplicon-based diversity survey using the D2 region of the large ribosomal subunit as a phylogenetic marker indicated that marsupial AGF communities were dominated by eight genera commonly encountered in placental herbivores (Neocallimastix, Caecomyces, Cyllamyces, Anaeromyces, Orpinomyces, Piromyces, Pecoramyces, and Khoyollomyces). Community structure analysis revealed a high level of stochasticity, and ordination approaches did not reveal a significant role for the animal host, gut type, dietary preferences, or lifestyle in structuring marsupial AGF communities. Marsupial foregut and hindgut communities displayed diversity and community structure patterns comparable to AGF communities typically encountered in placental foregut hosts while exhibiting a higher level of diversity and a distinct community structure compared to placental hindgut communities. Quantification of AGF load using quantitative PCR indicated a significantly smaller load in marsupial hosts compared to their placental counterparts. Isolation efforts were only successful from a single red kangaroo fecal sample and yielded a Khoyollomyces ramosus isolate closely related to strains previously isolated from placental hosts. Our results suggest that AGF communities in marsupials are in low abundance and show little signs of selection based on ecological and evolutionary factors.IMPORTANCEThe AGF are integral part of the microbiome of herbivores. They play a crucial role in breaking down plant biomass in hindgut and foregut fermenters. The majority of research has been conducted on the AGF community in placental mammalian hosts. However, it is important to note that many marsupial mammals are also herbivores and employ a hindgut or foregut fermentation strategy for breaking down plant biomass. So far, very little is known regarding the AGF diversity and community structure in marsupial mammals. To fill this knowledge gap, we conducted an amplicon-based diversity survey targeting AGF in 61 fecal samples from 10 marsupial species. We hypothesize that, given the distinct evolutionary history and alimentary tract architecture, novel and unique AGF communities would be encountered in marsupials. Our results indicate that marsupial AGF communities are highly stochastic, present in relatively low loads, and display community structure patterns comparable to AGF communities typically encountered in placental foregut hosts. Our results indicate that marsupial hosts harbor AGF communities; however, in contrast to the strong pattern of phylosymbiosis typically observed between AGF and placental herbivores, the identity and gut architecture appear to play a minor role in structuring AGF communities in marsupials.


Subject(s)
Mycobiome , Humans , Pregnancy , Animals , Female , Phylogeny , Anaerobiosis , Placenta , Macropodidae , Mammals , Fungi
2.
Front Microbiol ; 14: 1085090, 2023.
Article in English | MEDLINE | ID: mdl-36937253

ABSTRACT

Introduction: Translocation is a valuable and increasingly used strategy for the management of both threatened and overabundant wildlife populations. However, in some instances the translocated animals fail to thrive. Differences in diet between the source and destination areas may contribute to poor translocation outcomes, which could conceivably be exacerbated if the animals' microbiomes are unsuited to the new diet and cannot adapt. Methods: In this study we tracked how the faecal microbiome of a specialist Eucalyptus folivore, the koala (Phascolarctos cinereus), changed over the course of a year after translocation. We assessed microbiome composition by 16S rRNA amplicon sequencing of faecal pellets. Results: We found no significant overall changes in the faecal microbiomes of koalas post-translocation (n = 17) in terms of microbial richness, diversity or composition when compared to the faecal microbiomes of koalas from an untranslocated control group (n = 12). This was despite the translocated koalas feeding on a greater variety of Eucalyptus species after translocation. Furthermore, while differences between koalas accounted for half of the microbiome variation, estimated diets at the time of sampling only accounted for 5% of the variation in the koala microbiomes between sampling periods. By contrast, we observed that the composition of koala faecal microbiomes at the time of translocation accounted for 37% of between koala variation in post-translocation diet. We also observed that translocated koalas lost body condition during the first month post-translocation and that the composition of the koalas' initial microbiomes were associated with the magnitude of that change. Discussion: These findings suggest that the koala gut microbiome was largely unaffected by dietary change and support previous findings suggesting that the koala gut microbiome influences the tree species chosen for feeding. They further indicate that future research is needed to establish whether the koalas' gut microbiomes are directly influencing their health and condition or whether aspects of the koala gut microbiomes are an indicator of underlying physiological differences or pathologies. Our study provides insights into how animal microbiomes may not always be affected by the extreme upheaval of translocation and highlights that responses may be host species-specific. We also provide recommendations to improve the success of koala translocations in the future.

3.
BMC Biol ; 21(1): 59, 2023 03 22.
Article in English | MEDLINE | ID: mdl-36949471

ABSTRACT

BACKGROUND: With an increasing interest in the manipulation of methane produced from livestock cultivation, the microbiome of Australian marsupials provides a unique ecological and evolutionary comparison with 'low-methane' emitters. Previously, marsupial species were shown to be enriched for novel lineages of Methanocorpusculum, as well as Methanobrevibacter, Methanosphaera, and Methanomassiliicoccales. Despite sporadic reports of Methanocorpusculum from stool samples of various animal species, there remains little information on the impacts of these methanogens on their hosts. RESULTS: Here, we characterise novel host-associated species of Methanocorpusculum, to explore unique host-specific genetic factors and their associated metabolic potential. We performed comparative analyses on 176 Methanocorpusculum genomes comprising 130 metagenome-assembled genomes (MAGs) recovered from 20 public animal metagenome datasets and 35 other publicly available Methanocorpusculum MAGs and isolate genomes of host-associated and environmental origin. Nine MAGs were also produced from faecal metagenomes of the common wombat (Vombatus ursinus) and mahogany glider (Petaurus gracilis), along with the cultivation of one axenic isolate from each respective animal; M. vombati (sp. nov.) and M. petauri (sp. nov.). CONCLUSIONS: Through our analyses, we substantially expand the available genetic information for this genus by describing the phenotypic and genetic characteristics of 23 host-associated species of Methanocorpusculum. These lineages display differential enrichment of genes associated with methanogenesis, amino acid biosynthesis, transport system proteins, phosphonate metabolism, and carbohydrate-active enzymes. These results provide insights into the differential genetic and functional adaptations of these novel host-associated species of Methanocorpusculum and suggest that this genus is ancestrally host-associated.


Subject(s)
Methane , Microbiota , Animals , Australia , Methane/metabolism , Metagenome
4.
Arch Biochem Biophys ; 730: 109410, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36155781

ABSTRACT

Rhodococcus globerulus (R. globerulus) isolated from soil beneath Eucalyptus sp. was found to live on the monoterpenes 1,8-cineole, p-cymene and (R)- and (S)-limonene as sole sources of carbon and energy. Previous metabolic studies revealed that R. globerulus is capable of living on 1,8-cineole, the main monoterpene component of eucalyptus essential oil through the activity of cytochrome P450cin (CYP176A1) [1]. Genomic sequencing of R. globerulus revealed a novel putative cytochrome P450 (CYP108N12) that shares 48% sequence identity with CYP108A1 (P450terp) from Pseudomonas sp., an α-terpineol hydroxylase. Given the sequence similarity between CYP108N12 and P450terp, it was hypothesised that CYP108N12 may be responsible for initiating the biodegradation of a monoterpene structurally similar to α-terpineol such as (R)-limonene, (S)-limonene or p-cymene. Encoded within the operon containing CYP108N12 were two putative bacterial P450 redox partners and putative alcohol and aldehyde dehydrogenases, suggesting a complete catalytic system for activating these monoterpenes. Binding studies revealed that p-cymene and (R)- and (S)-limonene all bound tightly to CYP108N12 but α-terpineol did not. A catalytically active system was reconstituted using the non-native redox partner putidaredoxin and putidaredoxin reductase that act with CYP101A1 (P450cam) from Pseudomonas. This reconstituted system catalysed the hydroxylation of p-cymene to 4-isopropylbenzyl alcohol, and (R)- and (S)-limonene to (R)- and (S)-perillyl alcohol, respectively. R. globerulus was successfully grown on solely p-cymene, (R)-limonene or (S)-limonene. CYP108N12 was detected when R. globerulus was grown on p-cymene, but not either limonene enantiomer. The native function of CYP108N12 is therefore proposed to be initiation of p-cymene biodegradation by methyl oxidation and is a potentially attractive biocatalyst capable of specific benzylic and allylic hydroxylation.


Subject(s)
Monoterpenes , Oils, Volatile , Limonene , Eucalyptol , Monoterpenes/metabolism , Cytochrome P-450 Enzyme System/genetics , Pseudomonas/metabolism , Carbon , Soil , Aldehydes , Terpenes/metabolism
5.
Environ Microbiol ; 24(9): 4209-4219, 2022 09.
Article in English | MEDLINE | ID: mdl-35018700

ABSTRACT

In this study we compared the faecal microbiomes of wild joey koalas (Phascolarctos cinereus) to those of adults, including their mothers, to establish whether gut microbiome maturation and inheritance in the wild is comparable to that seen in captivity. Our findings suggest that joey koala microbiomes slowly shift towards an adult assemblage between 6 and 12 months of age, as the microbiomes of 9-month-old joeys were more similar to those of adults than those of 7-month-olds, but still distinct. At the phylum level, differences between joeys and adults were broadly consistent with those in captivity, with Firmicutes increasing in relative abundance over the joeys' development and Proteobacteria decreasing. Of the fibre-degrading genes that increased in abundance over the development of captive joeys, those involved in hemicellulose and cellulose degradation, but not pectin degradation, were also generally found in higher abundance in adult wild koalas compared to 7-month-olds. Greater maternal inheritance of the faecal microbiome was seen in wild than in captive koalas, presumably due to the more solitary nature of wild koalas. This strong maternal inheritance of the gut microbiome could contribute to the development of localized differences in microbiome composition, population health and diet through spatial clustering of relatives.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Phascolarctidae , Animals , Cellulose , Feces/microbiology , Gastrointestinal Microbiome/genetics , Microbiota/genetics , Phascolarctidae/microbiology
6.
Environ Microbiol ; 24(1): 475-493, 2022 01.
Article in English | MEDLINE | ID: mdl-34863030

ABSTRACT

The acquisition and maturation of the gastrointestinal microbiome is a crucial aspect of mammalian development, particularly for specialist herbivores such as the koala (Phascolarctos cinereus). Joey koalas are thought to be inoculated with microorganisms by feeding on specialized maternal faeces (pap). We found that compared to faeces, pap has higher microbial density, higher microbial evenness and a higher proportion of rare taxa, which may facilitate the establishment of those taxa in joey koalas. We show that the microbiomes of captive joey koalas were on average more similar to those of their mothers than to other koalas, indicating strong maternal inheritance of the faecal microbiome, which can lead to intergenerational gut dysbiosis when the mother is ill. Directly after pap feeding, the joey koalas' microbiomes were enriched for milk-associated bacteria including Bacteroides fragilis, suggesting a conserved role for this species across mammalian taxa. The joeys' microbiomes then changed slowly over 5 months to resemble those of adults by 1 year of age. The relative abundance of fibrolytic bacteria and genes involved in the degradation of plant cell walls also increased in the infants over this time, likely in response to an increased proportion of Eucalyptus leaves in their diets.


Subject(s)
Eucalyptus , Gastrointestinal Microbiome , Microbiota , Phascolarctidae , Animals , Gastrointestinal Microbiome/genetics , Humans , Maternal Inheritance , Microbiota/genetics , Phascolarctidae/metabolism , Phascolarctidae/microbiology
7.
ISME J ; 15(7): 1879-1892, 2021 07.
Article in English | MEDLINE | ID: mdl-33824426

ABSTRACT

The classification of life forms into a hierarchical system (taxonomy) and the application of names to this hierarchy (nomenclature) is at a turning point in microbiology. The unprecedented availability of genome sequences means that a taxonomy can be built upon a comprehensive evolutionary framework, a longstanding goal of taxonomists. However, there is resistance to adopting a single framework to preserve taxonomic freedom, and ever increasing numbers of genomes derived from uncultured prokaryotes threaten to overwhelm current nomenclatural practices, which are based on characterised isolates. The challenge ahead then is to reach a consensus on the taxonomic framework and to adapt and scale the existing nomenclatural code, or create a new code, to systematically incorporate uncultured taxa into the chosen framework.


Subject(s)
Genome , Prokaryotic Cells , Biological Evolution
8.
Free Radic Biol Med ; 140: 200-205, 2019 08 20.
Article in English | MEDLINE | ID: mdl-30930297

ABSTRACT

For well over a hundred years, members of the bacterial phylum Cyanobacteria have been considered strictly photosynthetic microorganisms, reflected in their classification as "blue-green algae" in the botanical code. Recently, genomes recovered from environmental sequencing surveys representing two major uncultured basal lineages (classes) of Cyanobacteria have been found to completely lack photosynthetic and CO2 fixation genes. The most likely explanation for this finding is that oxygenic photosynthesis was not an ancestral feature of the Cyanobacteria, and rather originated following divergence of the primary lines of descent. Here we describe recent findings on the evolution of aerobic respiration in the non-photosynthetic cyanobacterial classes, and how this has been interpreted by researchers interested in the evolution of oxygenic photosynthesis.


Subject(s)
Biological Evolution , Cyanobacteria/metabolism , Oxygen/metabolism , Photosynthesis/genetics , Aerobiosis/genetics , Cell Respiration/genetics , Cyanobacteria/genetics
9.
Anim Microbiome ; 1(1): 6, 2019 Aug 21.
Article in English | MEDLINE | ID: mdl-33499955

ABSTRACT

BACKGROUND: Differences between individuals in their gastrointestinal microbiomes can lead to variation in their ability to persist on particular diets. Koalas are dietary specialists, feeding almost exclusively on Eucalyptus foliage but many individuals will not feed on particular Eucalyptus species that are adequate food for other individuals, even when facing starvation. We undertook a faecal inoculation experiment to test whether a koala's gastrointestinal (GI) microbiome influences their diet. Wild-caught koalas that initially fed on the preferred manna gum (Eucalyptus viminalis) were brought into captivity and orally inoculated with encapsulated material derived from faeces from koalas feeding on either the less preferred messmate (E. obliqua; treatment) or manna gum (control). RESULTS: The gastrointestinal microbiomes of wild koalas feeding primarily on manna gum were distinct from those feeding primarily on messmate. We found that the gastrointestinal microbiomes of koalas were unresponsive to dietary changes because the control koalas' GI microbiomes did not change even when the nocturnal koalas were fed exclusively on messmate overnight. We showed that faecal inoculations can assist the GI microbiomes of koalas to change as the treatment koalas' GI microbiomes became more similar to those of wild koalas feeding on messmate. There was no overall difference between the control and treatment koalas in the quantity of messmate they consumed. However, the greater the change in the koalas' GI microbiomes, the more messmate they consumed after the inoculations had established. CONCLUSIONS: The results suggest that dietary changes can only lead to changes in the GI microbiomes of koalas if the appropriate microbial species are present, and/or that the koala gastrointestinal microbiome influences diet selection.

10.
PeerJ ; 5: e4075, 2017.
Article in English | MEDLINE | ID: mdl-29177117

ABSTRACT

The koala has evolved to become a specialist Eucalyptus herbivore since diverging from its closest relative, the wombat, a generalist herbivore. This niche adaptation involves, in part, changes in the gut microbiota. The goal of this study was to compare koala and wombat fecal microbiomes using metagenomics to identify potential differences attributable to dietary specialization. Several populations discriminated between the koala and wombat fecal communities, most notably S24-7 and Synergistaceae in the koala, and Christensenellaceae and RF39 in the wombat. As expected for herbivores, both communities contained the genes necessary for lignocellulose degradation and urea recycling partitioned and redundantly encoded across multiple populations. Secondary metabolism was overrepresented in the koala fecal samples, consistent with the need to process Eucalyptus secondary metabolites. The Synergistaceae population encodes multiple pathways potentially relevant to Eucalyptus compound metabolism, and is predicted to be a key player in detoxification of the koala's diet. Notably, characterized microbial isolates from the koala gut appear to be minor constituents of this habitat, and the metagenomes provide the opportunity for genome-directed isolation of more representative populations. Metagenomic analysis of other obligate and facultative Eucalyptus folivores will reveal whether putatively detoxifying bacteria identified in the koala are shared across these marsupials.

11.
Science ; 355(6332): 1436-1440, 2017 03 31.
Article in English | MEDLINE | ID: mdl-28360330

ABSTRACT

The origin of oxygenic photosynthesis in Cyanobacteria led to the rise of oxygen on Earth ~2.3 billion years ago, profoundly altering the course of evolution by facilitating the development of aerobic respiration and complex multicellular life. Here we report the genomes of 41 uncultured organisms related to the photosynthetic Cyanobacteria (class Oxyphotobacteria), including members of the class Melainabacteria and a new class of Cyanobacteria (class Sericytochromatia) that is basal to the Melainabacteria and Oxyphotobacteria All members of the Melainabacteria and Sericytochromatia lack photosynthetic machinery, indicating that phototrophy was not an ancestral feature of the Cyanobacteria and that Oxyphotobacteria acquired the genes for photosynthesis relatively late in cyanobacterial evolution. We show that all three classes independently acquired aerobic respiratory complexes, supporting the hypothesis that aerobic respiration evolved after oxygenic photosynthesis.


Subject(s)
Bacterial Proteins/metabolism , Cyanobacteria/enzymology , Electron Transport Complex III/metabolism , Electron Transport Complex IV/metabolism , Oxygen/metabolism , Photosynthesis/physiology , Aerobiosis , Bacterial Proteins/classification , Bacterial Proteins/genetics , Biological Evolution , Cyanobacteria/classification , Cyanobacteria/genetics , Electron Transport Complex III/classification , Electron Transport Complex III/genetics , Electron Transport Complex IV/genetics , Genome, Bacterial , Photosynthesis/genetics , Phylogeny
12.
PeerJ ; 3: e968, 2015.
Article in English | MEDLINE | ID: mdl-26038723

ABSTRACT

An uncultured non-photosynthetic basal lineage of the Cyanobacteria, the Melainabacteria, was recently characterised by metagenomic analyses of aphotic environmental samples. However, a predatory bacterium, Vampirovibrio chlorellavorus, originally described in 1972 appears to be the first cultured representative of the Melainabacteria based on a 16S rRNA sequence recovered from a lyophilised co-culture of the organism. Here, we sequenced the genome of V. chlorellavorus directly from 36 year-old lyophilised material that could not be resuscitated confirming its identity as a member of the Melainabacteria. We identified attributes in the genome that likely allow V. chlorellavorus to function as an obligate predator of the microalga Chlorella vulgaris, and predict that it is the first described predator to use an Agrobacterium tumefaciens-like conjugative type IV secretion system to invade its host. V. chlorellavorus is the first cyanobacterium recognised to have a predatory lifestyle and further supports the assertion that Melainabacteria are non-photosynthetic.

13.
Genome Biol Evol ; 6(5): 1031-45, 2014 May.
Article in English | MEDLINE | ID: mdl-24709563

ABSTRACT

Molecular surveys of aphotic habitats have indicated the presence of major uncultured lineages phylogenetically classified as members of the Cyanobacteria. One of these lineages has recently been proposed as a nonphotosynthetic sister phylum to the Cyanobacteria, the Melainabacteria, based on recovery of population genomes from human gut and groundwater samples. Here, we expand the phylogenomic representation of the Melainabacteria through sequencing of six diverse population genomes from gut and bioreactor samples supporting the inference that this lineage is nonphotosynthetic, but not the assertion that they are strictly fermentative. We propose that the Melainabacteria is a class within the phylogenetically defined Cyanobacteria based on robust monophyly and shared ancestral traits with photosynthetic representatives. Our findings are consistent with theories that photosynthesis occurred late in the Cyanobacteria and involved extensive lateral gene transfer and extends the recognized functionality of members of this phylum.


Subject(s)
Bioreactors/microbiology , Cyanobacteria/genetics , Genome, Bacterial , Phascolarctidae/microbiology , Phylogeny , Animals , Biological Evolution , Cyanobacteria/classification , Cyanobacteria/isolation & purification , Cyanobacteria/metabolism , Feces/microbiology , Genetics, Population , Male , Photosynthesis , RNA, Ribosomal, 16S , Waste Disposal, Fluid/instrumentation , Waste Disposal, Fluid/methods
14.
ISME J ; 7(7): 1452-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23303372

ABSTRACT

Coral reefs provide habitat for an array of marine invertebrates that host symbiotic microbiomes. Photosynthetic symbionts including Symbiodinium dinoflagellates and diatoms potentially influence the diversity of their host-associated microbiomes by releasing carbon-containing photosynthates and other organic compounds that fuel microbial metabolism. Here we used 16S ribosomal RNA (rRNA) gene amplicon pyrosequencing to characterise the microbiomes of 11 common Great Barrier Reef marine invertebrate species that host photosynthetic symbionts and five taxa in which they are absent. The presence of photosynthetic symbionts influenced the composition but not the species richness, evenness and phylogenetic diversity of invertebrate-associated microbiomes. Invertebrates without photosynthetic symbionts were dominated by Alphaproteobacteria, whereas those hosting photosynthetic symbionts were dominated by Gammaproteobacteria. Interestingly, many microbial species from photosymbiont-bearing invertebrates, including Oceanospirillales spp., Alteromonas spp., Pseudomonas spp., Halomonas spp., are implicated in the metabolism of dimethylsulfoniopropionate (DMSP). DMSP is produced in high concentrations by photosynthetic dinoflagellates and is involved in climate regulation by facilitating cloud formation. Microbiomes correlated with host taxa and replicate individuals from most sampled species grouped in distance-based redundancy analysis of retrieved 16S rRNA gene sequences. This study highlights the complex nature of invertebrate holobionts and confirms the importance of photosynthetic symbionts in structuring marine invertebrate bacterial communities.


Subject(s)
Anthozoa/microbiology , Bacterial Physiological Phenomena , Coral Reefs , Dinoflagellida/physiology , Invertebrates/microbiology , Microbiota/physiology , Symbiosis , Animals , Anthozoa/genetics , Anthozoa/physiology , Australia , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Dinoflagellida/genetics , Microbiota/genetics , Photosynthesis/physiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Homology, Nucleic Acid
15.
PLoS One ; 7(5): e36920, 2012.
Article in English | MEDLINE | ID: mdl-22629343

ABSTRACT

Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.


Subject(s)
Anthozoa/microbiology , Bacteria/genetics , DNA, Bacterial/genetics , Animals , Biodiversity , Coral Reefs , RNA, Ribosomal, 16S/genetics , Western Australia
16.
Environ Microbiol Rep ; 3(6): 756-62, 2011 Dec.
Article in English | MEDLINE | ID: mdl-23761367

ABSTRACT

Marine sponges are critical components of benthic environments; however, their sessile habit, requirement to filter large volumes of water and complex symbiotic partnerships make them particularly vulnerable to the effects of global climate change. We assessed the effect of elevated seawater temperature on bacterial communities in larvae of the Great Barrier Reef sponge, Rhopaloeides odorabile. In contrast to the strict thermal threshold of 32°C previously identified in adult R. odorabile, larvae exhibit a markedly higher thermal tolerance, with no adverse health effects detected at temperatures below 36°C. Similarly, larval microbial communities were conserved at temperatures up to 34°C with a highly significant shift occurring after 24 h at 36°C. This shift involved the loss of previously described symbionts (in particular the Nitrospira, Chloroflexi and a Roseobacter lineage) and the appearance of new Gammaproteobacteria not detected at lower temperatures. Here, we demonstrated that sponge larvae maintain highly stable symbioses at seawater temperatures exceeding those that are predicted under current climate change scenarios. In addition, by revealing that the shift in microbial composition occurs in conjunction with necrosis and mortality of larvae at 36°C we have provided additional evidence of the strong link between host health and the stability of symbiont communities.

17.
Environ Microbiol ; 11(3): 715-28, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19278453

ABSTRACT

Tramway Ridge, located near the summit of Mount Erebus in Antarctica, is probably the most remote geothermal soil habitat on Earth. Steam fumaroles maintain moist, hot soil environments creating extreme local physicochemical differentials. In this study a culture-independent approach combining automated rRNA intergenic spacer analysis (ARISA) and a 16S rRNA gene library was used to characterize soil microbial (Bacterial and Archaeal) diversity along intense physicochemical gradients. Statistical analysis of ARISA data showed a clear delineation between bacterial community structure at sites close to fumaroles and all other sites. Temperature and pH were identified as the primary drivers of this demarcation. A clone library constructed from a high-temperature site led to the identification of 18 novel bacterial operational taxonomic units (OTUs). All 16S rRNA gene sequences were deep branching and distantly (85-93%) related to other environmental clones. Five of the signatures branched with an unknown group between candidate division OP10 and Chloroflexi. Within this clade, sequence similarity was low, suggesting it contains several yet-to-be described bacterial groups. Five archaeal OTUs were obtained and exhibited high levels of sequence similarity (95-97%) with Crenarchaeota sourced from deep-subsurface environments on two distant continents. The novel bacterial assemblage coupled with the unique archaeal affinities reinvigorates the hypotheses that Tramway Ridge organisms are relics of archaic microbial lineages specifically adapted to survive in this harsh environment and that this site may provide a portal to the deep-subsurface biosphere.


Subject(s)
Archaea/classification , Archaea/isolation & purification , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Soil Microbiology , Antarctic Regions , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , DNA, Ribosomal Spacer/chemistry , DNA, Ribosomal Spacer/genetics , Genes, rRNA , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , RNA, Archaeal/genetics , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid , Temperature
18.
Environ Microbiol ; 10(7): 1713-24, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18373679

ABSTRACT

Biotic communities and ecosystem dynamics in terrestrial Antarctica are limited by an array of extreme conditions including low temperatures, moisture and organic matter availability, high salinity, and a paucity of biodiversity to facilitate key ecological processes. Recent studies have discovered that the prokaryotic communities in these extreme systems are highly diverse with patchy distributions. Investigating the physical and biological controls over the distribution and activity of microbial biodiversity in Victoria Land is essential to understanding ecological functioning in this region. Currently, little information on the distribution, structure and activity of soil communities anywhere in Victoria Land are available, and their sensitivity to potential climate change remains largely unknown. We investigated soil microbial communities from low- and high-productivity habitats in an isolated Antarctic location to determine how the soil environment impacts microbial community composition and structure. The microbial communities in Luther Vale, Northern Victoria Land were analysed using bacterial 16S rRNA gene clone libraries and were related to soil geochemical parameters and classical morphological analysis of soil metazoan invertebrate communities. A total of 323 16S rRNA gene sequences analysed from four soils spanning a productivity gradient indicated a high diversity (Shannon-Weaver values > 3) of phylotypes within the clone libraries and distinct differences in community structure between the two soil productivity habitats linked to water and nutrient availability. In particular, members of the Deinococcus/Thermus lineage were found exclusively in the drier, low-productivity soils, while Gammaproteobacteria of the genus Xanthomonas were found exclusively in high-productivity soils. However, rarefaction curves indicated that these microbial habitats remain under-sampled. Our results add to the recent literature suggesting that there is a higher biodiversity within Antarctic soils than previously expected.


Subject(s)
Bacteria/classification , DNA, Bacterial/analysis , RNA, Ribosomal, 16S/genetics , Soil Microbiology , Antarctic Regions , Bacteria/chemistry , Bacteria/genetics , DNA, Ribosomal/analysis , Genetic Variation , Sequence Analysis, DNA , Soil/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...