Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 15(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37112044

ABSTRACT

This study presents a thorough experimental investigation utilising the design of experiments and analysis of variance (ANOVA) to examine the impact of machining process parameters on chip formation mechanisms, machining forces, workpiece surface integrity, and damage resulting from the orthogonal cutting of unidirectional CFRP. The study identified the mechanisms behind chip formation and found it to significantly impact the workpiece orientation of fibre and the tool's cutting angle, resulting in increased fibre bounceback at larger fibre orientation angles and when using smaller rake angle tools. Increasing the depth of cut and fibre orientation angle results in an increased damage depth, while using higher rake angles reduces it. An analytical model based on response surface analysis for predicting machining forces, damage, surface roughness, and bounceback was also developed. The ANOVA results indicate that fibre orientation is the most significant factor in machining CFRP, while cutting speed is insignificant. Increasing fibre orientation angle and depth leads to deeper damage, while larger tool rake angles reduce damage. Machining workpieces with 0° fibre orientation angle results in the least subsurface damage, and surface roughness is unaffected by the tool rake angle for fibre orientations between 0° to 90° but worsens for angles greater than 90°. Optimisation of cutting parameters was subsequently carried out to improve machined workpiece surface quality and reduce forces. The experimental results showed that negative rake angle and cutting at moderately low speeds (366 mm/min) are the optimal conditions for machining laminates with a fibre angle of θ = 45°. On the other hand, for composite materials with fibre angles of θ = 90° and θ = 135°, it is recommended to use a high positive rake angle and cutting speeds.

2.
Micromachines (Basel) ; 14(2)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36838013

ABSTRACT

This paper details an experimental investigation on the influence of the size effect when slot-milling a CMSX-4 single-crystal nickel-based superalloy using 1 mm- and 4 mm-diameter TiAlN-coated tungsten carbide (WC) end-mills. With all tools having similar cutting-edge radii (re) of ~6 µm, the feed rate was varied between 25-250 mm/min while the cutting speed and axial depth of cut were kept constant at 126 m/min and 100 µm, respectively. Tests involving the Ø 4 mm end-mills exhibited a considerable elevation in specific cutting forces exceeding 500 GPa, as well as irregular chip morphology and a significant increase in burr size, when operating at the lowest feed rate of 25 mm/min. Correspondingly for the Ø 1 mm micro-end-mills, high levels of specific cutting forces up to ~1000 GPa together with severe material ploughing and grooving at the base of the machined slots were observed. This suggests the prevalence of the size effect in the chip formation mechanism as feed per tooth/uncut chip thickness decreases. The minimum uncut chip thickness (hmin) when micromilling was subsequently estimated to be less than 0.10 re, while this increased to between 0.10-0.42 re when machining with the larger Ø 4 mm tools.

3.
Materials (Basel) ; 14(21)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34772075

ABSTRACT

Titanium oxide layers were produced via a novel catalytic ceramic conversion treatment (CCCT, C3T) on Ti-6Al-4V. This CCCT process is carried out by applying thin catalytic films of silver and palladium onto the substrate before an already established traditional ceramic conversion treatment (CCT, C2T) is carried out. The layers were characterised using scanning electron microscopy, X-ray diffraction, transmission electron microscopy; surface micro-hardness and reciprocating tribological performance was assessed; antibacterial performance was also assessed with S. aureus. This CCCT has been shown to increase the oxide thickness from ~5 to ~100 µm, with the production of an aluminium rich layer and agglomerates of silver and palladium oxide surrounded by vanadium oxide at the surface. The wear factor was significantly reduced from ~393 to ~5 m3/N·m, and a significant reduction in the number of colony-forming units per ml of Staphylococcus aureus on the CCCT surfaces was observed. The potential of the novel C3T treatment has been demonstrated by comparing the performance of C3T treated and untreated Ti6Al4V fixation pins through inserting into simulated bone materials.

4.
J Mater Sci Mater Med ; 28(1): 5, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27885572

ABSTRACT

In this study, an advanced ceramic conversion surface engineering technology has been applied for the first time to self-drilling Ti6Al4V external fixation pins to improve their performance in terms of biomechanical, bio-tribological and antibacterial properties. Systematic characterisation of the ceramic conversion treated Ti pins was carried out using Scanning electron microscope, X-ray diffraction, Glow-discharge optical emission spectroscopy, nano- and micro-indentation and scratching; the biomechanical and bio-tribological properties of the surface engineered Ti pins were evaluated by insertion into high density bone simulation material; and the antibacterial behaviour was assessed with Staphylococcus aureus NCTC 6571. The experimental results have demonstrated that the surfaces of Ti6Al4V external fixation pins were successfully converted into a TiO2 rutile layer (~2 µm in thickness) supported by an oxygen hardened case (~15 µm in thickness) with very good bonding due to the in-situ conversion nature. The maximum insertion force and temperature were reduced from 192N and 31.2 °C when using the untreated pins to 182N and 26.1 °C when the ceramic conversion treated pins were tested. This is mainly due to the significantly increased hardness (more than three times) and the effectively enhanced wear resistance of the cutting edge of the self-drilling Ti pins following the ceramic conversion treatment. The antibacterial tests also revealed that there was a significantly reduced number of bacteria isolated from the ceramic conversion treated pins compared to the untreated pins of around 50 % after 20 h incubation, P < 0.01 (0.0024). The results reported are encouraging and could pave the way towards high-performance anti-bacterial titanium external fixation pins with reduced pin-track infection and pin loosing.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Bone Nails , Ceramics/chemistry , Staphylococcal Infections/drug therapy , Titanium/chemistry , Alloys , Biomechanical Phenomena , Coated Materials, Biocompatible , External Fixators , Materials Testing , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Staphylococcus aureus/drug effects , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...