Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Ageing Res Rev ; 88: 101941, 2023 07.
Article in English | MEDLINE | ID: mdl-37127095

ABSTRACT

While aging was traditionally viewed as a stochastic process of damage accumulation, it is now clear that aging is strongly influenced by genetics. The identification and characterization of long-lived genetic mutants in model organisms has provided insights into the genetic pathways and molecular mechanisms involved in extending longevity. Long-lived genetic mutants exhibit activation of multiple stress response pathways leading to enhanced resistance to exogenous stressors. As a result, lifespan exhibits a significant, positive correlation with resistance to stress. Disruption of stress response pathways inhibits lifespan extension in multiple long-lived mutants representing different pathways of lifespan extension and can also reduce the lifespan of wild-type animals. Combined, this suggests that activation of stress response pathways is a key mechanism by which long-lived mutants achieve their extended longevity and that many of these pathways are also required for normal lifespan. These results highlight an important role for stress response pathways in determining the lifespan of an organism.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Humans , Longevity/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Aging/genetics , Oxidative Stress
2.
Aging Cell ; 22(3): e13762, 2023 03.
Article in English | MEDLINE | ID: mdl-36794357

ABSTRACT

The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7. We found that tbc-2 mutants have decreased nuclear localization of DAF-16 in response to heat stress, anoxia, and bacterial pathogen stress, but increased nuclear localization of DAF-16 in response to chronic oxidative stress and osmotic stress. tbc-2 mutants also exhibit decreased upregulation of DAF-16 target genes in response to stress. To determine whether the rate of nuclear localization of DAF-16 affected stress resistance in these animals, we examined survival after exposure to multiple exogenous stressors. Disruption of tbc-2 decreased resistance to heat stress, anoxia, and bacterial pathogen stress in both wild-type worms and stress-resistant daf-2 insulin/IGF-1 receptor mutants. Similarly, deletion of tbc-2 decreases lifespan in both wild-type worms and daf-2 mutants. When DAF-16 is absent, the loss of tbc-2 is still able to decrease lifespan but has little or no impact on resistance to most stresses. Combined, this suggests that disruption of tbc-2 affects lifespan through both DAF-16-dependent and DAF-16-independent pathways, while the effect of tbc-2 deletion on resistance to stress is primarily DAF-16-dependent. Overall, this work demonstrates the importance of endosomal trafficking for the proper nuclear localization of DAF-16 during stress and that perturbation of normal endosomal trafficking is sufficient to decrease both stress resistance and lifespan.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Longevity/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/metabolism , Insulin/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , GTPase-Activating Proteins/metabolism
3.
Aging Cell ; 22(2): e13740, 2023 02.
Article in English | MEDLINE | ID: mdl-36514863

ABSTRACT

Mutations that extend lifespan are associated with enhanced resistance to stress. To better understand the molecular mechanisms underlying this relationship, we directly compared lifespan extension, resistance to external stressors, and gene expression in a panel of nine long-lived Caenorhabditis elegans mutants from different pathways of lifespan extension. All of the examined long-lived mutants exhibited increased resistance to one or more types of stress. Resistance to each of the examined types of stress had a significant, positive correlation with lifespan, with bacterial pathogen resistance showing the strongest relationship. Analysis of transcriptional changes indicated that all of the examined long-lived mutants showed a significant upregulation of multiple stress response pathways. Interestingly, there was a very significant overlap between genes highly correlated with stress resistance and genes highly correlated with longevity, suggesting that the same genetic pathways drive both phenotypes. This was especially true for genes correlated with bacterial pathogen resistance, which showed an 84% overlap with genes correlated with lifespan. To further explore the relationship between innate immunity and longevity, we disrupted the p38-mediated innate immune signaling pathway in each of the long-lived mutants and found that this pathway is required for lifespan extension in eight of nine mutants. Overall, our results demonstrate a strong correlation between stress resistance and longevity that results from the high degree of overlap in genes contributing to each phenotype. Moreover, these findings demonstrate the importance of the innate immune system in lifespan determination and indicate that the same underlying genes drive both immunity and longevity.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Longevity/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/metabolism , Caenorhabditis elegans/physiology , Immunity, Innate/genetics , Forkhead Transcription Factors/metabolism
4.
Redox Biol ; 53: 102335, 2022 07.
Article in English | MEDLINE | ID: mdl-35598379

ABSTRACT

Mild impairment of mitochondrial function has been shown to increase lifespan in genetic model organisms including worms, flies and mice. To better understand the mechanisms involved, we analyzed RNA sequencing data and found that genes involved in the mitochondrial thioredoxin system, trx-2 and trxr-2, are specifically upregulated in long-lived mitochondrial mutants but not other non-mitochondrial, long-lived mutants. Upregulation of trx-2 and trxr-2 is mediated by activation of the mitochondrial unfolded protein response (mitoUPR). While we decided to focus on the genes of the mitochondrial thioredoxin system for this paper, we identified multiple other antioxidant genes that are upregulated by the mitoUPR in the long-lived mitochondrial mutants including sod-3, prdx-3, gpx-6, gpx-7, gpx-8 and glrx-5. In exploring the role of the mitochondrial thioredoxin system in the long-lived mitochondrial mutants, nuo-6 and isp-1, we found that disruption of either trx-2 or trxr-2 significantly decreases their long lifespan, but has no effect on wild-type lifespan, indicating that the mitochondrial thioredoxin system is specifically required for their longevity. In contrast, disruption of the cytoplasmic thioredoxin gene trx-1 decreases lifespan in nuo-6, isp-1 and wild-type worms, indicating a non-specific detrimental effect on longevity. Disruption of trx-2 or trxr-2 also decreases the enhanced resistance to stress in nuo-6 and isp-1 worms, indicating a role for the mitochondrial thioredoxin system in protecting against exogenous stressors. Overall, this work demonstrates an important role for the mitochondrial thioredoxin system in both stress resistance and lifespan resulting from mild impairment of mitochondrial function.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Longevity , Mitochondria , Oxidative Stress , Thioredoxins , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Glutaredoxins/metabolism , Longevity/genetics , Longevity/physiology , Mitochondria/genetics , Mitochondria/metabolism , Oxidative Stress/genetics , Oxidative Stress/physiology , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
5.
Int J Mol Sci ; 22(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34948242

ABSTRACT

Huntington's disease (HD) is one of at least nine polyglutamine diseases caused by a trinucleotide CAG repeat expansion, all of which lead to age-onset neurodegeneration. Mitochondrial dynamics and function are disrupted in HD and other polyglutamine diseases. While multiple studies have found beneficial effects from decreasing mitochondrial fragmentation in HD models by disrupting the mitochondrial fission protein DRP1, disrupting DRP1 can also have detrimental consequences in wild-type animals and HD models. In this work, we examine the effect of decreasing mitochondrial fragmentation in a neuronal C. elegans model of polyglutamine toxicity called Neur-67Q. We find that Neur-67Q worms exhibit mitochondrial fragmentation in GABAergic neurons and decreased mitochondrial function. Disruption of drp-1 eliminates differences in mitochondrial morphology and rescues deficits in both movement and longevity in Neur-67Q worms. In testing twenty-four RNA interference (RNAi) clones that decrease mitochondrial fragmentation, we identified eleven clones-each targeting a different gene-that increase movement and extend lifespan in Neur-67Q worms. Overall, we show that decreasing mitochondrial fragmentation may be an effective approach to treating polyglutamine diseases and we identify multiple novel genetic targets that circumvent the potential negative side effects of disrupting the primary mitochondrial fission gene drp-1.


Subject(s)
Caenorhabditis elegans/metabolism , GABAergic Neurons/metabolism , Huntington Disease/metabolism , Mitochondria/metabolism , Mitochondrial Dynamics , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal , Drug Delivery Systems , Humans , Huntington Disease/drug therapy , Huntington Disease/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , RNA Interference
6.
MicroPubl Biol ; 20212021.
Article in English | MEDLINE | ID: mdl-34693215

ABSTRACT

The mitochondrial unfolded protein response (mitoUPR) is an evolutionarily conserved pathway that restores homeostasis to the mitochondria after various disturbances. This pathway has roles in both resistance to exogenous stressors and longevity. The mitoUPR is mediated by the transcription factor ATFS-1/ATF-5, which modulates the expression of genes involved in protein folding, metabolism and stress resistance. MitoUPR activation in C. elegans is most commonly evaluated through transcriptional reporter strains for the mitochondrial chaperones HSP-6 and HSP-60. In order to obtain a more comprehensive view of transcriptional changes resulting from activation of the mitoUPR, we compared gene expression changes from three different mitoUPR-activating interventions: mutation of nuo-6, RNA interference (RNAi) knockdown of spg-7,and constitutive activation of ATFS-1. We specifically focused on gene expression changes that are dependent on ATFS-1. From this comparison, we identified 61 high confidence target genes that can be used to monitor mitoUPR activation. Notably, neither hsp-6 nor hsp-60 were significantly upregulated under all three mitoUPR activating conditions. We ranked the 61 genes according to the magnitude of upregulation and identify multiple genes that may serve as robust readouts of mitoUPR activation.

7.
Aging Dis ; 12(7): 1753-1772, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34631219

ABSTRACT

Huntington's disease (HD) is an adult-onset neurodegenerative disease caused by a trinucleotide CAG repeat expansion in the HTT gene. While the pathogenesis of HD is incompletely understood, mitochondrial dysfunction is thought to be a key contributor. In this work, we used C. elegans models to elucidate the role of mitochondrial dynamics in HD. We found that expression of a disease-length polyglutamine tract in body wall muscle, either with or without exon 1 of huntingtin, results in mitochondrial fragmentation and mitochondrial network disorganization. While mitochondria in young HD worms form elongated tubular networks as in wild-type worms, mitochondrial fragmentation occurs with age as expanded polyglutamine protein forms aggregates. To correct the deficit in mitochondrial morphology, we reduced levels of DRP-1, the GTPase responsible for mitochondrial fission. Surprisingly, we found that disrupting drp-1 can have detrimental effects, which are dependent on how much expression is decreased. To avoid potential negative side effects of disrupting drp-1, we examined whether decreasing mitochondrial fragmentation by targeting other genes could be beneficial. Through this approach, we identified multiple genetic targets that rescue movement deficits in worm models of HD. Three of these genetic targets, pgp-3, F25B5.6 and alh-12, increased movement in the HD worm model and restored mitochondrial morphology to wild-type morphology. This work demonstrates that disrupting the mitochondrial fission gene drp-1 can be detrimental in animal models of HD, but that decreasing mitochondrial fragmentation by targeting other genes can be protective. Overall, this study identifies novel therapeutic targets for HD aimed at improving mitochondrial health.

8.
EMBO Rep ; 22(12): e52964, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34617666

ABSTRACT

While mitochondrial function is essential for life in all multicellular organisms, a mild impairment of mitochondrial function can extend longevity in model organisms. By understanding the molecular mechanisms involved, these pathways might be targeted to promote healthy aging. In studying two long-lived mitochondrial mutants in C. elegans, we found that disrupting subunits of the mitochondrial electron transport chain results in upregulation of genes involved in innate immunity, which is driven by the mitochondrial unfolded protein response (mitoUPR) but also dependent on the canonical p38-mediated innate immune signaling pathway. Both of these pathways are required for the increased resistance to bacterial pathogens and extended longevity of the long-lived mitochondrial mutants, as is the FOXO transcription factor DAF-16. This work demonstrates that both the p38-mediated innate immune signaling pathway and the mitoUPR act in concert on the same innate immunity genes to promote pathogen resistance and longevity and that input from the mitochondria can extend longevity by signaling through these pathways. This indicates that multiple evolutionarily conserved genetic pathways controlling innate immunity also function to modulate lifespan.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Immunity, Innate/physiology , Longevity/genetics , Mitochondria/genetics , Mitochondria/metabolism , Signal Transduction
9.
Life Sci Alliance ; 4(12)2021 12.
Article in English | MEDLINE | ID: mdl-34583931

ABSTRACT

The mitochondrial unfolded protein response (mitoUPR) is an evolutionarily conserved pathway that responds to mitochondria insults through transcriptional changes, mediated by the transcription factor ATFS-1/ATF-5, which acts to restore mitochondrial homeostasis. In this work, we characterized the role of ATFS-1 in responding to organismal stress. We found that activation of ATFS-1 is sufficient to cause up-regulation of genes involved in multiple stress response pathways including the DAF-16-mediated stress response pathway, the cytosolic unfolded protein response, the endoplasmic reticulum unfolded protein response, the SKN-1-mediated oxidative stress response pathway, the HIF-1-mediated hypoxia response pathway, the p38-mediated innate immune response pathway, and antioxidant genes. Constitutive activation of ATFS-1 increases resistance to multiple acute exogenous stressors, whereas disruption of atfs-1 decreases stress resistance. Although ATFS-1-dependent genes are up-regulated in multiple long-lived mutants, constitutive activation of ATFS-1 decreases lifespan in wild-type animals. Overall, our work demonstrates that ATFS-1 serves a vital role in organismal survival of acute stressors through its ability to activate multiple stress response pathways but that chronic ATFS-1 activation is detrimental for longevity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Signal Transduction/genetics , Stress, Physiological/genetics , Transcription Factors/metabolism , Unfolded Protein Response/genetics , Animals , Animals, Genetically Modified , Caenorhabditis elegans/immunology , Caenorhabditis elegans Proteins/genetics , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Forkhead Transcription Factors/metabolism , Immunity, Innate , Longevity/genetics , Mutation , Oxidative Stress/genetics , Signal Transduction/immunology , Stress, Physiological/immunology , Transcription Factors/genetics , Up-Regulation/genetics
10.
J Neurogenet ; 34(3-4): 549-560, 2020.
Article in English | MEDLINE | ID: mdl-33292036

ABSTRACT

In the following pages, we share a collection of photos, drawings, and mixed-media creations, most of them especially made for this JoN issue, manifesting C. elegans researchers' affection for their model organism and the founders of the field. This is a celebration of our community's growth, flourish, spread, and bright future. Descriptions provided by the contributors, edited for space. 1.


Subject(s)
Caenorhabditis elegans , Medicine in the Arts , Animals , Literature, Modern , Medicine in Literature , Microscopy , Research Personnel
11.
Mech Ageing Dev ; 191: 111316, 2020 10.
Article in English | MEDLINE | ID: mdl-32693105

ABSTRACT

At a recent symposium on aging biology, a debate was held as to whether or not we know what biological aging is. Most of the participants were struck not only by the lack of consensus on this core question, but also on many basic tenets of the field. Accordingly, we undertook a systematic survey of our 71 participants on key questions that were raised during the debate and symposium, eliciting 37 responses. The results confirmed the impression from the symposium: there is marked disagreement on the most fundamental questions in the field, and little consensus on anything other than the heterogeneous nature of aging processes. Areas of major disagreement included what participants viewed as the essence of aging, when it begins, whether aging is programmed or not, whether we currently have a good understanding of aging mechanisms, whether aging is or will be quantifiable, whether aging will be treatable, and whether many non-aging species exist. These disagreements lay bare the urgent need for a more unified and cross-disciplinary paradigm in the biology of aging that will clarify both areas of agreement and disagreement, allowing research to proceed more efficiently. We suggest directions to encourage the emergence of such a paradigm.


Subject(s)
Aging , Biomedical Research , Consensus , Humans
12.
Mech Ageing Dev ; 190: 111297, 2020 09.
Article in English | MEDLINE | ID: mdl-32610099

ABSTRACT

While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.


Subject(s)
Longevity , Neurodegenerative Diseases , Protective Agents/pharmacology , Aged , Humans , Longevity/drug effects , Longevity/physiology , Neurodegenerative Diseases/classification , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/prevention & control
13.
Mol Neurodegener ; 12(1): 60, 2017 08 22.
Article in English | MEDLINE | ID: mdl-28830501

ABSTRACT

BACKGROUND: Alzheimer's Disease (AD), characterized by accumulation of beta-amyloid (Aß) plaques in the brain, can be caused by age-related failures to clear Aß from the brain through pathways that involve the cerebrovasculature. Vascular risk factors are known to increase AD risk, but less is known about potential protective factors. We hypothesize that high-density lipoproteins (HDL) may protect against AD, as HDL have vasoprotective properties that are well described for peripheral vessels. Epidemiological studies suggest that HDL is associated with reduced AD risk, and animal model studies support a beneficial role for HDL in selectively reducing cerebrovascular amyloid deposition and neuroinflammation. However, the mechanism by which HDL may protect the cerebrovascular endothelium in the context of AD is not understood. METHODS: We used peripheral blood mononuclear cell adhesion assays in both a highly novel three dimensional (3D) biomimetic model of the human vasculature composed of primary human endothelial cells (EC) and smooth muscle cells cultured under flow conditions, as well as in monolayer cultures of ECs, to study how HDL protects ECs from the detrimental effects of Aß. RESULTS: Following Aß addition to the abluminal (brain) side of the vessel, we demonstrate that HDL circulated within the lumen attenuates monocyte adhesion to ECs in this biofidelic vascular model. The mechanism by which HDL suppresses Aß-mediated monocyte adhesion to ECs was investigated using monotypic EC cultures. We show that HDL reduces Aß-induced PBMC adhesion to ECs independent of nitric oxide (NO) production, miR-233 and changes in adhesion molecule expression. Rather, HDL acts through scavenger receptor (SR)-BI to block Aß uptake into ECs and, in cell-free assays, can maintain Aß in a soluble state. We confirm the role of SR-BI in our bioengineered human vessel. CONCLUSION: Our results define a novel activity of HDL that suppresses Aß-mediated monocyte adhesion to the cerebrovascular endothelium.


Subject(s)
Amyloid beta-Peptides/metabolism , Brain/metabolism , Endothelial Cells/metabolism , Leukocytes, Mononuclear/metabolism , Lipoproteins, HDL/metabolism , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Disease Models, Animal , Humans , Monocytes/metabolism , Plaque, Amyloid/metabolism
14.
J Biomed Res ; 2017 05 26.
Article in English | MEDLINE | ID: mdl-28550271

ABSTRACT

The pleiotropic functions of circulating high density lipoprotein (HDL) on peripheral vascular health are well established. HDL plays a pivotal role in reverse cholesterol transport and is also known to suppress inflammation, endothelial activation and apoptosis in peripheral vessels. Although not expressed in the central nervous system, HDL has nevertheless emerged as a potential resilience factor for dementia in multiple epidemiological studies. Animal model data specifically support a role for HDL in attenuating the accumulation of ß-amyloid within cerebral vessels concomitant with reduced neuroinflammation and improved cognitive performance. As the vascular contributions to dementia are increasingly appreciated, this review seeks to summarize recent literature focused on the vasoprotective properties of HDL that may extend to cerebral vessels, discuss potential roles of HDL in dementia relative to brain-derived lipoproteins, identify gaps in current knowledge, and highlight new opportunities for research and discovery.

15.
Front Psychiatry ; 6: 39, 2015.
Article in English | MEDLINE | ID: mdl-25852578

ABSTRACT

INTRODUCTION: Advanced video technology is available for sleep-laboratories. However, low-cost equipment for screening in the home setting has not been identified and tested, nor has a methodology for analysis of video recordings been suggested. METHODS: We investigated different combinations of hardware/software for home-videosomnography (HVS) and established a process for qualitative and quantitative analysis of HVS-recordings. A case vignette (HVS analysis for a 5.5-year-old girl with major insomnia and several co-morbidities) demonstrates how methodological considerations were addressed and how HVS added value to clinical assessment. RESULTS: We suggest an "ideal set of hardware/software" that is reliable, affordable (∼$500) and portable (=2.8 kg) to conduct non-invasive HVS, which allows time-lapse analyses. The equipment consists of a net-book, a camera with infrared optics, and a video capture device. (1) We present an HVS-analysis protocol consisting of three steps of analysis at varying replay speeds: (a) basic overview and classification at 16× normal speed; (b) second viewing and detailed descriptions at 4-8× normal speed, and (c) viewing, listening, and in-depth descriptions at real-time speed. (2) We also present a custom software program that facilitates video analysis and note-taking (Annotator(©)), and Optical Flow software that automatically quantifies movement for internal quality control of the HVS-recording. The case vignette demonstrates how the HVS-recordings revealed the dimension of insomnia caused by restless legs syndrome, and illustrated the cascade of symptoms, challenging behaviors, and resulting medications. CONCLUSION: The strategy of using HVS, although requiring validation and reliability testing, opens the floor for a new "observational sleep medicine," which has been useful in describing discomfort-related behavioral movement patterns in patients with communication difficulties presenting with challenging/disruptive sleep/wake behaviors.

SELECTION OF CITATIONS
SEARCH DETAIL
...