Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3916, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38729927

ABSTRACT

The UK observed a marked increase in scarlet fever and invasive group A streptococcal infection in 2022 with severe outcomes in children and similar trends worldwide. Here we report lineage M1UK to be the dominant source of invasive infections in this upsurge. Compared with ancestral M1global strains, invasive M1UK strains exhibit reduced genomic diversity and fewer mutations in two-component regulator genes covRS. The emergence of M1UK is dated to 2008. Following a bottleneck coinciding with the COVID-19 pandemic, three emergent M1UK clades underwent rapid nationwide expansion, despite lack of detection in previous years. All M1UK isolates thus-far sequenced globally have a phylogenetic origin in the UK, with dispersal of the new clades in Europe. While waning immunity may promote streptococcal epidemics, the genetic features of M1UK point to a fitness advantage in pathogenicity, and a striking ability to persist through population bottlenecks.


Subject(s)
COVID-19 , Phylogeny , Streptococcal Infections , Streptococcus pyogenes , Streptococcus pyogenes/genetics , Streptococcus pyogenes/pathogenicity , Streptococcus pyogenes/isolation & purification , United Kingdom/epidemiology , Humans , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , COVID-19/epidemiology , Pandemics , Scarlet Fever/epidemiology , Scarlet Fever/microbiology , Mutation , Repressor Proteins/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Genome, Bacterial , Europe/epidemiology , Bacterial Proteins
2.
R Soc Open Sci ; 8(2): 202023, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33972876

ABSTRACT

Histones are the principal constituents of eukaryotic chromatin. The four core histones (H2A, H2B, H3 and H4) are conserved across sequenced eukaryotic genomes and therefore thought to be universal to eukaryotes. In the early 1980s, however, a series of biochemical investigations failed to find evidence for histones or nucleosomal structures in the microscopic green alga Nanochlorum eucaryotum. If true, derived histone loss in this lineage would constitute an exceptional case that might help us further understand the principles governing eukaryotic gene regulation. To substantiate these earlier reports of histone loss in N. eucaryotum, we sequenced, assembled and quantified its transcriptome. Following a systematic search for histone-fold domains in the assembled transcriptome, we detect orthologues to all four core histones. We also find histone mRNAs to be highly expressed, comparable to the situation in other eukaryotes. Finally, we obtain characteristic protection patterns when N. eucaryotum chromatin is subjected to micrococcal nuclease digestion, indicating widespread formation of nucleosomal complexes in vivo. We conclude that previous reports of missing histones in N. eucaryotum were mistaken. By all indications, Nanochlorum eucaryotum has histone-based chromatin characteristic of most eukaryotes.

3.
PLoS Genet ; 17(2): e1009353, 2021 02.
Article in English | MEDLINE | ID: mdl-33524037

ABSTRACT

RNA structures are dynamic. As a consequence, mutational effects can be hard to rationalize with reference to a single static native structure. We reasoned that deep mutational scanning experiments, which couple molecular function to fitness, should capture mutational effects across multiple conformational states simultaneously. Here, we provide a proof-of-principle that this is indeed the case, using the self-splicing group I intron from Tetrahymena thermophila as a model system. We comprehensively mutagenized two 4-bp segments of the intron. These segments first come together to form the P1 extension (P1ex) helix at the 5' splice site. Following cleavage at the 5' splice site, the two halves of the helix dissociate to allow formation of an alternative helix (P10) at the 3' splice site. Using an in vivo reporter system that couples splicing activity to fitness in E. coli, we demonstrate that fitness is driven jointly by constraints on P1ex and P10 formation. We further show that patterns of epistasis can be used to infer the presence of intramolecular pleiotropy. Using a machine learning approach that allows quantification of mutational effects in a genotype-specific manner, we demonstrate that the fitness landscape can be deconvoluted to implicate P1ex or P10 as the effective genetic background in which molecular fitness is compromised or enhanced. Our results highlight deep mutational scanning as a tool to study alternative conformational states, with the capacity to provide critical insights into the structure, evolution and evolvability of RNAs as dynamic ensembles. Our findings also suggest that, in the future, deep mutational scanning approaches might help reverse-engineer multiple alternative or successive conformations from a single fitness landscape.


Subject(s)
Introns/genetics , Mutation , RNA Splicing , RNA, Protozoan/genetics , RNA/genetics , Tetrahymena thermophila/genetics , Base Sequence , Evolution, Molecular , Genetic Fitness , Genetic Pleiotropy , Genotype , Kinetics , Machine Learning , Nucleic Acid Conformation , RNA/chemistry , RNA Splice Sites/genetics
4.
Biotechnol Bioeng ; 114(4): 852-861, 2017 04.
Article in English | MEDLINE | ID: mdl-27800599

ABSTRACT

We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc.


Subject(s)
Lactic Acid/metabolism , Metabolic Engineering/methods , Methane/metabolism , Methanosarcina/metabolism , Butanols/metabolism , Lactic Acid/analysis , Methanosarcina/genetics , Stereoisomerism
5.
Curr Top Med Chem ; 17(10): 1157-1176, 2017.
Article in English | MEDLINE | ID: mdl-27697046

ABSTRACT

Despite the fact that bacterial infections are one of the leading causes of death worldwide and that mortality rates are increasing at alarming rates, no new antibiotics have been produced by the pharmaceutical industry in more than a decade. The situation is so dire that the World Health Organization warned that we may enter a "post-antibiotic era" within this century; accordingly, bacteria resistant against all known antibiotics are becoming common and already producing untreatable infections. Although several novel approaches to combat bacterial infections have been proposed, they have yet to be implemented in clinical practice. Hence, we propose that a more plausible and faster approach is the utilization of drugs originally developed for other purposes besides antimicrobial activity. Among these are some anticancer molecules proven effective in vitro for eliminating recalcitrant, multidrug tolerant bacteria; some of which also protect animals from infections and recently are undergoing clinical trials. In this review, we highlight the similarities between cancer cells/tumors and bacterial infections, and present evidence that supports the utilization of some anticancer drugs, including 5-fluorouracil (5-FU), gallium (Ga) compounds, and mitomycin C, as antibacterials. Each of these drugs has some promising properties such as broad activity (all three compounds), dual antibiotic and antivirulence properties (5-FU), efficacy against multidrug resistant strains (Ga), and the ability to kill metabolically dormant persister cells which cause chronic infections (mitomycin C).


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Drug Repositioning , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans , Microbial Sensitivity Tests , Molecular Structure
6.
Nat Commun ; 7: 13634, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27929062

ABSTRACT

The Hha and TomB proteins from Escherichia coli form an oxygen-dependent toxin-antitoxin (TA) system. Here we show that YmoB, the Yersinia orthologue of TomB, and its single cysteine variant [C117S]YmoB can replace TomB as antitoxins in E. coli. In contrast to other TA systems, [C117S]YmoB transiently interacts with Hha (rather than forming a stable complex) and enhances the spontaneous oxidation of the Hha conserved cysteine residue to a -SOxH-containing species (sulfenic, sulfinic or sulfonic acid), which destabilizes the toxin. The nuclear magnetic resonance structure of [C117S]YmoB and the homology model of TomB show that the two proteins form a four-helix bundle with a conserved buried cysteine connected to the exterior by a channel with a diameter comparable to that of an oxygen molecule. The Hha interaction site is located on the opposite side of the helix bundle.


Subject(s)
DNA-Binding Proteins/physiology , Escherichia coli Proteins/physiology , Toxin-Antitoxin Systems/physiology , Amino Acid Sequence , Escherichia coli K12 , Oxidation-Reduction , Protein Conformation , Yersinia/chemistry
7.
J Biol Chem ; 291(38): 19873-87, 2016 09 16.
Article in English | MEDLINE | ID: mdl-27474741

ABSTRACT

Enzymes that utilize the cofactor pyridoxal 5'-phosphate play essential roles in amino acid metabolism in all organisms. The cofactor is used by proteins that adopt at least five different folds, which raises questions about the evolutionary processes that might explain the observed distribution of functions among folds. In this study, we show that a representative of fold type III, the Escherichia coli alanine racemase (ALR), is a promiscuous cystathionine ß-lyase (CBL). Furthermore, E. coli CBL (fold type I) is a promiscuous alanine racemase. A single round of error-prone PCR and selection yielded variant ALR(Y274F), which catalyzes cystathionine ß-elimination with a near-native Michaelis constant (Km = 3.3 mm) but a poor turnover number (kcat ≈10 h(-1)). In contrast, directed evolution also yielded CBL(P113S), which catalyzes l-alanine racemization with a poor Km (58 mm) but a high kcat (22 s(-1)). The structures of both variants were solved in the presence and absence of the l-alanine analogue, (R)-1-aminoethylphosphonic acid. As expected, the ALR active site was enlarged by the Y274F substitution, allowing better access for cystathionine. More surprisingly, the favorable kinetic parameters of CBL(P113S) appear to result from optimizing the pKa of Tyr-111, which acts as the catalytic acid during l-alanine racemization. Our data emphasize the short mutational routes between the functions of pyridoxal 5'-phosphate-dependent enzymes, regardless of whether or not they share the same fold. Thus, they confound the prevailing model of enzyme evolution, which predicts that overlapping patterns of promiscuity result from sharing a common multifunctional ancestor.


Subject(s)
Alanine Racemase/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Evolution, Molecular , Lyases/chemistry , Mutation, Missense , Alanine Racemase/genetics , Alanine Racemase/metabolism , Amino Acid Substitution , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lyases/genetics , Lyases/metabolism , Pyridoxal Phosphate/chemistry , Pyridoxal Phosphate/genetics , Pyridoxal Phosphate/metabolism
8.
Microb Cell Fact ; 15: 11, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26767617

ABSTRACT

BACKGROUND: Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. RESULTS: Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) from a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using (13)C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. CONCLUSIONS: We anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.


Subject(s)
Biofuels , Methane/metabolism , Methanosarcina/metabolism , Methanosarcina/enzymology , Oxidoreductases/metabolism
9.
Biochemistry ; 53(46): 7223-31, 2014 Nov 25.
Article in English | MEDLINE | ID: mdl-25376905

ABSTRACT

MqsR-controlled colanic acid and biofilm regulator (McbR, also known as YncC) is the protein product of a highly induced gene in early Escherichia coli biofilm development and has been regarded as an attractive target for blocking biofilm formation. This protein acts as a repressor for genes involved in exopolysaccharide production and an activator for genes involved in stress response. To better understand the role of McbR in governing the switch from exponential growth to the biofilm state, we determined the crystal structure of McbR to 2.1 Å. The structure reveals McbR to be a member of the FadR C-terminal domain (FCD) family of the GntR superfamily of transcriptional regulators (this family was named after the first identified member, GntR, a transcriptional repressor of the gluconate operon of Bacillus subtilis). Previous to this study, only six of the predicted 2800 members of this family had been structurally characterized. Here, we identify the residues that constitute the McbR effector and DNA binding sites. In addition, comparison of McbR with other members of the FCD domain family shows that this family of proteins adopts highly distinct oligomerization interfaces, which has implications for DNA binding and regulation.


Subject(s)
Biofilms/growth & development , DNA, Bacterial/metabolism , DNA-Binding Proteins/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Transcription Factors/chemistry , Transcription Factors/metabolism , Amino Acid Sequence , Binding Sites , Crystallography, X-Ray , DNA-Binding Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Protein Multimerization
10.
Sci Rep ; 4: 4807, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24797297

ABSTRACT

The prevalence of toxin/antitoxin (TA) systems in almost all genomes suggests they evolve rapidly. Here we show that an antitoxin from a type V system (GhoS, an endoribonuclease specific for the mRNA of the toxin GhoT) can be converted into a novel toxin (ArT) simply by adding two mutations. In contrast to GhoS, which increases growth, the new toxin ArT decreases growth dramatically in Escherichia coli. Transmission electron microscopy analysis revealed that the nucleoid in ArT-producing cells is concentrated and appears hollow. Whole-transcriptome profiling revealed ArT cleaves 50 additional transcripts, which shows that the endoribonuclease activity of GhoS has been broadened as it was converted to ArT. Furthermore, we evolved an antitoxin for the new toxin ArT from two unrelated antitoxin templates, the protein-based antitoxin MqsA and RNA-based antitoxin ToxI, and showed that the evolved MqsA and ToxI variants are able to counteract the toxicity of ArT. In addition, the de novo TA system was found to increase persistence, a phenotype commonly associated with TA systems. Therefore, toxins and antitoxins from disparate systems can be interconverted.


Subject(s)
Antitoxins/genetics , Bacterial Toxins/genetics , Escherichia coli/genetics , Toxins, Biological/genetics , Escherichia coli Proteins/genetics , RNA, Messenger/genetics , Transcriptome/genetics
11.
Bioengineered ; 5(4): 264-8, 2014.
Article in English | MEDLINE | ID: mdl-24874800

ABSTRACT

Lon protease is conserved from bacteria to humans and regulates cellular processes by degrading different classes of proteins including antitoxins, transcriptional activators, unfolded proteins, and free ribosomal proteins. Since we found that Lon has several putative cyclic diguanylate (c-di-GMP) binding sites and since Lon binds polyphosphate (polyP) and lipid polysaccharide, we hypothesized that Lon has an affinity for phosphate-based molecules that might regulate its activity. Hence we tested the effect of polyP, cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), guanosine tetraphosphate (ppGpp), c-di-GMP, and GMP on the ability of Lon to degrade α-casein. Inhibition of in vitro Lon activity occurred for polyP, cAMP, ppGpp, and c-di-GMP. We also demonstrated by HPLC that Lon is able to bind c-di-GMP. Therefore, four cell signals were found to regulate the activity of Lon protease.


Subject(s)
Cyclic AMP/chemistry , Cyclic GMP/analogs & derivatives , Guanosine Tetraphosphate/chemistry , Polyphosphates/chemistry , Protease La/chemistry , Amino Acid Sequence , Binding Sites , Caseins/chemistry , Cyclic GMP/chemistry , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Molecular Sequence Data , Proteolysis
12.
Environ Microbiol ; 16(6): 1741-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24373067

ABSTRACT

Toxin/antitoxin (TA) systems perhaps enable cells to reduce their metabolism to weather environmental challenges although there is little evidence to support this hypothesis. Escherichia coli GhoT/GhoS is a TA system in which toxin GhoT expression is reduced by cleavage of its messenger RNA (mRNA) by antitoxin GhoS, and TA system MqsR/MqsA controls GhoT/GhoS through differential mRNA decay. However, the physiological role of GhoT has not been determined. We show here through transmission electron microscopy, confocal microscopy and fluorescent stains that GhoT reduces metabolism by damaging the membrane and that toxin MqsR (a 5'-GCU-specific endoribonuclease) causes membrane damage in a GhoT-dependent manner. This membrane damage results in reduced cellular levels of ATP and the disruption of proton motive force (PMF). Normally, GhoT is localized to the pole and does not cause cell lysis under physiological conditions. Introduction of an F38R substitution results in loss of GhoT toxicity, ghost cell production and membrane damage while retaining the pole localization. Also, deletion of ghoST or ghoT results in significantly greater initial growth in the presence of antimicrobials. Collectively, these results demonstrate that GhoT reduces metabolism by reducing ATP and PMF and that this reduction in metabolism is important for growth with various antimicrobials.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/physiology , Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Biphenyl Compounds/pharmacology , Carbenicillin/pharmacology , Cefoxitin/pharmacology , Chloroquinolinols/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Protein Transport , Proton-Motive Force , RNA, Messenger/metabolism
13.
Sci Rep ; 3: 3186, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24212724

ABSTRACT

MqsA, the antitoxin of the MqsR/MqsA toxin/antitoxin (TA) system, is a global regulator that reduces expression of several stress response genes (e.g., mqsRA, cspD, and rpoS) by binding to the promoter palindromic motif [5'-AACCT (N)3 AGGTT-3']. We identified a similar mqsRA-like palindrome [5'-AACCT TA AGGTT-3'] 78 bp upstream of the transcription initiation site in the csgD promoter (p-csgD). CsgD is a master regulator for biofilm formation via its control of curli and cellulose production. We show here that MqsA binds to this palindrome in p-csgD to repress csgD transcription. As expected, p-csgD repression by MqsA resulted in reduced transcription from CsgD-regulated curli genes csgA and csgB (encoding the major and minor curlin subunits, respectively). Curli production was reduced in colonies and in planktonic cells upon MqsA production. Hence, MqsA directly represses p-csgD, and thereby influences curli formation. This demonstrates that TA systems can impact overall cell physiology by fine-tuning cellular stress responses.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Trans-Activators/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Base Sequence , Biofilms/growth & development , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding , Sigma Factor/chemistry , Sigma Factor/metabolism , Trans-Activators/chemistry , Trans-Activators/genetics , Transcription, Genetic
14.
Proc Natl Acad Sci U S A ; 108(4): 1484-9, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21173244

ABSTRACT

Duplicated genes provide an important raw material for adaptive evolution. However, the relationship between gene duplication and the emergence of new biochemical functions is complicated, and it has been difficult to quantify the likelihood of evolving novelty in any systematic manner. Here, we describe a comprehensive search for artificially amplified genes that are able to impart new phenotypes on Escherichia coli, provided their expression is up-regulated. We used a high-throughput, library-on-library strategy to screen for resistance to antibiotics and toxins. Cells containing a complete E. coli ORF library were exposed to 237 toxin-containing environments. From 86 of these environments, we identified a total of 115 cases where overexpressed ORFs imparted improved growth. Of the overexpressed ORFs that we tested, most conferred small but reproducible increases in minimum inhibitory concentration (≤16-fold) for their corresponding antibiotics. In many cases, proteins were acting promiscuously to impart resistance. In the absence of toxins, most strains bore no fitness cost associated with ORF overexpression. Our results show that even the genome of a nonpathogenic bacterium harbors a substantial reservoir of resistance genes, which can be readily accessed through overexpression mutations. During the growth of a population under selection, these mutations are most likely to be gene amplifications. Therefore, our work provides validation and biochemical insight into the innovation, amplification, and divergence model of gene evolution under continuous selection [Bergthorsson U, Andersson DI, Roth JR (2007) Proc Natl Acad Sci USA 104:17004-17009], and also illustrates the high frequency at which novel traits can evolve in bacterial populations.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Gene Amplification , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Evolution, Molecular , Gene Duplication , Gene Library , Microbial Sensitivity Tests , Models, Genetic , Mutation , Open Reading Frames/genetics , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...