Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 492
Filter
1.
Nat Commun ; 15(1): 5848, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992071

ABSTRACT

Atomic sawtooth surfaces have emerged as a versatile platform for growth of single-crystal van der Waals layered materials. However, the mechanism governing the formation of single-crystal atomic sawtooth metal (copper or gold) films on hard substrates (tungsten or molybdenum) remains a puzzle. In this study, we aim to elucidate the formation mechanism of atomic sawtooth metal films during melting-solidification process. Utilizing molecular dynamics, we unveil that the solidification of the liquid copper initiates at a high-index tungsten facet with higher interfacial energy. Subsequent tungsten facets follow energetically favourable pathways of forming single-crystal atomic sawtooth copper film during the solidification process near melting temperature. Formation of atomic sawtooth copper film is guaranteed with a film thickness exceeding the grain size of polycrystalline tungsten substrate. We further demonstrate the successful growth of centimeter-scale single-crystal monolayer hexagonal boron nitride films on atomic sawtooth copper films and explore their potential as efficient oxygen barrier.

2.
BMC Plant Biol ; 24(1): 527, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38858674

ABSTRACT

BACKGROUND: Angelica Gigas (Purple parsnip) is an important medicinal plant that is cultivated and utilized in Korea, Japan, and China. It contains bioactive substances especially coumarins with anti-inflammatory, anti-platelet aggregation, anti-cancer, anti-diabetic, antimicrobial, anti-obesity, anti-oxidant, immunomodulatory, and neuroprotective properties. This medicinal crop can be genetically improved, and the metabolites can be obtained by embryonic stem cells. In this context, we established the protoplast-to-plant regeneration methodology in Angelica gigas. RESULTS: In the present investigation, we isolated the protoplast from the embryogenic callus by applying methods that we have developed earlier and established protoplast cultures using Murashige and Skoog (MS) liquid medium and by embedding the protoplast in thin alginate layer (TAL) methods. We supplemented the culture medium with growth regulators namely 2,4-dichlorophenoxyaceticacid (2,4-D, 0, 0.75, 1.5 mg L- 1), kinetin (KN, 0, 0.5, and 1.0 mg L- 1) and phytosulfokine (PSK, 0, 50, 100 nM) to induce protoplast division, microcolony formation, and embryogenic callus regeneration. We applied central composite design (CCD) and response surface methodology (RSM) for the optimization of 2,4-D, KN, and PSK levels during protoplast division, micro-callus formation, and induction of embryogenic callus stages. The results revealed that 0.04 mg L- 1 2,4-D + 0.5 mg L- 1 KN + 2 nM PSK, 0.5 mg L- 1 2,4-D + 0.9 mg L- 1 KN and 90 nM PSK, and 1.5 mg L- 1 2,4-D and 1 mg L- 1 KN were optimum for protoplast division, micro-callus formation and induction embryogenic callus. MS basal semi-solid medium without growth regulators was good for the development of embryos and plant regeneration. CONCLUSIONS: This study demonstrated successful protoplast culture, protoplast division, micro-callus formation, induction embryogenic callus, somatic embryogenesis, and plant regeneration in A. gigas. The methodologies developed here are quite useful for the genetic improvement of this important medicinal plant.


Subject(s)
Angelica , Plant Growth Regulators , Plant Somatic Embryogenesis Techniques , Protoplasts , Angelica/embryology , Plant Growth Regulators/pharmacology , Plant Somatic Embryogenesis Techniques/methods , Protoplasts/drug effects , Cell Division/drug effects
3.
Article in English | MEDLINE | ID: mdl-38943223

ABSTRACT

Se-free n-type (Bi,Sb)2Te3 thermoelectric materials, outperforming traditional n-type Bi2(Te,Se)3, emerge as a compelling candidate for practical applications of recovering low-grade waste heat. A 100% improvement in the maximum ZT of n-type Bi1.7Sb0.3Te3 is demonstrated by using melt-spinning and excess Te-assisted transient liquid phase sintering (LPS). Te-rich sintering promotes the formation of intrinsic defects (TeBi), elevating the carrier concentration and enhancing the electrical conductivity. Melt-spinning with excess Te fine-tunes the electronic band, resulting in a high power-factor of 0.35 × 10-3 W·m-1 K-2 at 300 K. Rapid volume change during sintering induces the formation of dislocation networks, significantly suppressing the lattice thermal conductivity (0.4 W·m-1 K-1). The developed n-type legs achieve a high maximum ZT of 1.0 at 450 K resulting in a 70% improvement in the output power of the thermoelectric device (7.7 W at a temperature difference of 250 K). This work highlights the synergy between melt-spinning and transient LPS, advancing the tailored control of both electronic and thermal properties in thermoelectric technology.

4.
Nanoscale ; 16(22): 10779-10788, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38757983

ABSTRACT

The properties of transition metal dichalcogenides (TMDCs) are critically dependent on the dielectric constant of substrates, which significantly limits their application. To address this issue, we used a perfluorinated polyether (PFPE) self-assembled monolayer (SAM) with low surface energy to increase the van der Waals (vdW) gap between TMDCs and the substrate, thereby reducing the interaction between them. This resulted in a reduction in the subthreshold swing value, an increase in the photoluminescence intensity of excitons, and a decrease in the doping effect by the substrate. This work will provide a new way to control the TMDC/dielectric interface and contribute to expanding the applicability of TMDCs.

5.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38586011

ABSTRACT

Microglia-driven neuroinflammation plays an important role in the development of Alzheimer's disease (AD). Microglia activation is accompanied by the formation and chronic maintenance of TLR4 inflammarafts, defined as enlarged and cholesterol-rich lipid rafts serving as an assembly platform for TLR4 dimers and complexes of other inflammatory receptors. The secreted apoA-I binding protein (APOA1BP or AIBP) binds TLR4 and selectively targets cholesterol depletion machinery to TLR4 inflammaraft expressing inflammatory, but not homeostatic microglia. Here we demonstrated that amyloid-beta (Aß) induced formation of TLR4 inflammarafts in microglia in vitro and in the brain of APP/PS1 mice. Mitochondria in Apoa1bp-/- APP/PS1 microglia were hyperbranched and cupped, which was accompanied by increased ROS and the dilated ER. The size and number of Aß plaques and neuronal cell death were significantly increased, and the animal survival was decreased in Apoa1bp-/- APP/PS1 compared to APP/PS1 female mice. These results suggest that AIBP exerts control of TLR4 inflammarafts and mitochondrial dynamics in microglia and plays a protective role in AD associated oxidative stress and neurodegeneration.

6.
Biochem Biophys Res Commun ; 710: 149860, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38604070

ABSTRACT

Schizophyllan (SPG), a ß-glucan from Schizophyllum commune, is recognized for its antioxidant, immunoregulatory, and anticancer activities. In this study, its effects on bone cells, particularly osteoclasts and osteoblasts, were examined. We demonstrated that SPG dose-dependently inhibited osteoclastogenesis and reduced gene expression associated with osteoclast differentiation. SPG also decreased bone resorption and F-actin ring formation. This inhibition could have been due to the downregulation of transcription factors c-Fos and nuclear factor of activated T cells 1 (NFATc1) via the MAPKs (JNK and p38), IκBα, and PGC1ß/PPARγ pathways. In coculture, SPG lowered osteoclastogenic activity in calvaria-derived osteoblasts by reducing macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) expression. In addition, SPG slightly enhanced osteoblast differentiation, as evidenced by increased differentiation marker gene expression and alizarin red staining. It also exhibited antiresorptive effects in a lipopolysaccharide-induced calvarial bone loss model. These results indicated a dual role of SPG in bone cell regulation by suppressing osteoclastogenesis and promoting osteoblast differentiation. Thus, SPG could be a therapeutic agent for bone resorption-related diseases such as osteoporosis, rheumatoid arthritis, and periodontitis.


Subject(s)
Bone Resorption , Sizofiran , Humans , Osteoclasts/metabolism , Sizofiran/metabolism , Sizofiran/pharmacology , NFATC Transcription Factors/metabolism , Osteoblasts/metabolism , Cell Differentiation , Bone Resorption/drug therapy , Bone Resorption/metabolism , Osteogenesis , RANK Ligand/metabolism
7.
Int J Radiat Biol ; 100(5): 756-766, 2024.
Article in English | MEDLINE | ID: mdl-38489594

ABSTRACT

PURPOSE: People are exposed to low-dose radiation in medical diagnosis, occupational, or life circumstances, but the effect of low-dose radiation on human health is still controversial. The biological effects of radiation below 100 mGy are still unproven. In this study, we observed the effects of low-dose radiation (100 mGy) on gene expression in human coronary artery endothelial cells (HCAECs) and its effect on molecular signaling. MATERIALS AND METHODS: HCAECs were exposed to 100 mGy ionizing radiation at 6 mGy/h (low-dose-rate) or 288 mGy/h (high-dose-rate). After 72 h, total RNA was extracted from sham or irradiated cells for Quant-Seq 3'mRNA-Seq, and bioinformatic analyses were performed using Metascape. Gene profiling was validated using qPCR. RESULTS: Compared to the non-irradiated control group, 100 mGy of ionizing radiation at 6 mGy/h altered the expression of 194 genes involved in signaling pathways related to heart contraction, blood circulation, and cardiac myofibril assembly differentially. However, 100 mGy at 288 mGy/h altered expression of 450 genes involved in cell cycle-related signaling pathways, including cell division, nuclear division, and mitosis differentially. Additionally, gene signatures responding to low-dose radiation, including radiation dose-specific gene profiles (HIST1H2AI, RAVER1, and POTEI) and dose-rate-specific gene profiles (MYL2 for the low-dose-rate and DHRS9 and CA14 for the high-dose-rate) were also identified. CONCLUSIONS: We demonstrated that 100 mGy low-dose radiation could alter gene expression and molecular signaling pathways at the low-dose-rate and the high-dose-rate differently. Our findings provide evidence for further research on the potential impact of low-dose radiation on cardiovascular function.


Subject(s)
Computational Biology , Coronary Vessels , Dose-Response Relationship, Radiation , Endothelial Cells , Transcriptome , Humans , Coronary Vessels/radiation effects , Coronary Vessels/cytology , Endothelial Cells/radiation effects , Endothelial Cells/metabolism , Transcriptome/radiation effects , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Radiation Dosage , Signal Transduction/radiation effects
8.
Cells ; 13(2)2024 01 21.
Article in English | MEDLINE | ID: mdl-38275823

ABSTRACT

Glaucoma is a group of ocular diseases that cause irreversible blindness. It is characterized by multifactorial degeneration of the optic nerve axons and retinal ganglion cells (RGCs), resulting in the loss of vision. Major components of glaucoma pathogenesis include glia-driven neuroinflammation and impairment of mitochondrial dynamics and bioenergetics, leading to retinal neurodegeneration. In this review article, we summarize current evidence for the emerging role of apolipoprotein A-I binding protein (AIBP) as an important anti-inflammatory and neuroprotective factor in the retina. Due to its association with toll-like receptor 4 (TLR4), extracellular AIBP selectively removes excess cholesterol from the plasma membrane of inflammatory and activated cells. This results in the reduced expression of TLR4-associated, cholesterol-rich lipid rafts and the inhibition of downstream inflammatory signaling. Intracellular AIBP is localized to mitochondria and modulates mitophagy through the ubiquitination of mitofusins 1 and 2. Importantly, elevated intraocular pressure induces AIBP deficiency in mouse models and in human glaucomatous retina. AIBP deficiency leads to the activation of TLR4 in Müller glia, triggering mitochondrial dysfunction in both RGCs and Müller glia, and compromising visual function in a mouse model. Conversely, restoring AIBP expression in the retina reduces neuroinflammation, prevents RGCs death, and protects visual function. These results provide new insight into the mechanism of AIBP function in the retina and suggest a therapeutic potential for restoring retinal AIBP expression in the treatment of glaucoma.


Subject(s)
Glaucoma , Toll-Like Receptor 4 , Mice , Animals , Humans , Toll-Like Receptor 4/metabolism , Neuroinflammatory Diseases , Glaucoma/metabolism , Retina/metabolism , Cholesterol/metabolism
9.
ACS Nano ; 18(4): 3125-3133, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38227480

ABSTRACT

Monolayered transition-metal dichalcogenides (TMDs) are easily exposed to air, and their crystal quality can often be degraded via oxidation, leading to poor electronic and optical device performance. The degradation becomes more severe in the presence of defects, grain boundaries, and residues. Here, we report crack propagation in pristine TMD monolayers grown by chemical vapor deposition under ambient conditions and light illumination. Under a high relative humidity (RH) of ∼60% and white light illumination, the cracks appear randomly. Photo-oxidative cracks gradually propagated along the grain boundaries of the TMD monolayers. In contrast, under low RH conditions of ∼2%, cracks were scarcely observed. Crack propagation is predominantly attributed to the accumulation of water underneath the TMD monolayers, which is preferentially absorbed by hygroscopic alkali metal-based precursor residues. Crack propagation is further accelerated by the cyclic process of photo-oxidation in a basic medium, leading to localized tensile strain. We also found that such crack propagation is prevented after the removal of alkali metals via the transfer of the sample to other substrates.

10.
Nat Nanotechnol ; 19(1): 34-43, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37666942

ABSTRACT

Beyond-silicon technology demands ultrahigh performance field-effect transistors. Transition metal dichalcogenides provide an ideal material platform, but the device performances such as the contact resistance, on/off ratio and mobility are often limited by the presence of interfacial residues caused by transfer procedures. Here, we show an ideal residue-free transfer approach using polypropylene carbonate with a negligible residue coverage of ~0.08% for monolayer MoS2 at the centimetre scale. By incorporating a bismuth semimetal contact with an atomically clean monolayer MoS2 field-effect transistor on hexagonal boron nitride substrate, we obtain an ultralow Ohmic contact resistance of ~78 Ω µm, approaching the quantum limit, and a record-high on/off ratio of ~1011 at 15 K. Such an ultra-clean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting transition metal dichalcogenides.

11.
Small ; 20(22): e2308672, 2024 May.
Article in English | MEDLINE | ID: mdl-38155506

ABSTRACT

Layered 2D transition metal dichalcogenides (TMDs) have been suggested as efficient substitutes for Pt-group metal electrocatalysts in the hydrogen evolution reaction (HER). However, poor catalytic activities in neutral and alkaline electrolytes considerably hinder their practical applications. Furthermore, the weak adhesion between TMDs and electrodes often impedes long-term durability and thus requires a binder. Here, a universal platform is reported for robust dual-atom doped 2D electrocatalysts with superior HER performance over a wide pH range media. V:Co-ReS2 on a wafer scale is directly grown on oxidized Ti foil by a liquid-phase precursor-assisted approach and subsequently used as highly efficient electrocatalysts. The catalytic performance surpasses that of Pt group metals in a high current regime (≥ 100 mA cm-2) at pH ≥ 7, with a high durability of more than 70 h in all media at 200 mA cm-2. First-principles calculations reveal that V:Co dual doping in ReS2 significantly reduces the water dissociation barrier and simultaneously enables the material to achieve the thermoneutral Gibbs free energy for hydrogen adsorption.

12.
bioRxiv ; 2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37905114

ABSTRACT

Glaucoma is a neurodegenerative disease manifested in retinal ganglion cell (RGC) death and irreversible blindness. While lowering intraocular pressure (IOP) is the only proven therapeutic strategy in glaucoma, it is insufficient for preventing disease progression, thus justifying the recent focus on targeting retinal neuroinflammation and preserving RGCs. We have identified apolipoprotein A-I binding protein (AIBP) as the protein regulating several mechanisms of retinal neurodegeneration. AIBP controls excessive cholesterol accumulation via upregulating the cholesterol transporter ATP-binding cassette transporter 1 (ABCA1) and reduces inflammatory signaling via toll-like receptor 4 (TLR4) and mitochondrial dysfunction. ABCA1, TLR4 and oxidative phosphorylation components are genetically linked to primary open-angle glaucoma. Here we demonstrated that AIBP and ABCA1 expression was decreased, while TLR4, interleukin 1 beta (IL-1 beta), and the cholesterol content increased in the retina of patients with glaucoma and in mouse models of glaucoma. Restoring AIBP expression by a single intravitreal injection of adeno-associated virus (AAV)-AIBP protected RGCs in glaucomatous DBA/2J mice, in mice with microbead-induced chronic IOP elevation, and optic nerve crush. In addition, AIBP expression attenuated TLR4 and IL-1 beta expression, localization of TLR4 to lipid rafts, reduced cholesterol accumulation, and ameliorated visual dysfunction. These studies collectively indicate that restoring AIBP expression in the glaucomatous retina reduces neuroinflammation and protects RGCs and Muller glia, suggesting the therapeutic potential of AAV-AIBP in human glaucoma.

13.
Curr Opin Lipidol ; 34(5): 189-195, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37527160

ABSTRACT

PURPOSE OF REVIEW: Advances in single cell techniques revealed a remarkable diversity in macrophage gene expression profiles in atherosclerosis. However, the diversity of functional processes at the macrophage plasma membrane remains less studied. This review summarizes recent advances in characterization of lipid rafts, where inflammatory receptors assemble, in macrophages that undergo reprogramming in atherosclerotic lesions and in vitro under conditions relevant to the development of atherosclerosis. RECENT FINDINGS: The term inflammarafts refers to enlarged lipid rafts with increased cholesterol content, hosting components of inflammatory receptor complexes assembled in close proximity, including TLR4-TLR4, TLR2-TLR1 and TLR2-CD36 dimers. Macrophages decorated with inflammarafts maintain chronic inflammatory gene expression and are primed to an augmented response to additional inflammatory stimuli. In mouse atherosclerotic lesions, inflammarafts are expressed primarily in nonfoamy macrophages and less in lipid-laden foam cells. This agrees with the reported suppression of inflammatory programs in foam cells. In contrast, nonfoamy macrophages expressing inflammarafts are the major inflammatory population in atherosclerotic lesions. Discussed are emerging reports that help understand formation and persistence of inflammarafts and the potential of inflammarafts as a novel therapeutic target. SUMMARY: Chronic maintenance of inflammarafts in nonfoamy macrophages serves as an effector mechanism of inflammatory macrophage reprogramming in atherosclerosis.


Subject(s)
Atherosclerosis , Plaque, Atherosclerotic , Animals , Mice , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 2/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Atherosclerosis/metabolism , Foam Cells/metabolism , Plaque, Atherosclerotic/pathology
14.
Chem Commun (Camb) ; 59(60): 9247-9250, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37424442

ABSTRACT

Surface self-reconstruction of oxygen evolution reaction (OER) electrocatalysts generally occurs during the electrochemical activation process. Herein, we study the surface self-reconstruction of a 2D layered Fe-doped Ni-thiophosphate (NixFe1-xPS3) nanosheet. The role of Fe in the surface self-reconstruction of NiPS3 during the OER is investigated by using an in situ Raman analysis. Formation of amorphous metal/non-metal oxide layers on the surface of NixFe1-xPS3 can efficiently act as the ultimate catalytic center for the OER.

15.
J Med Syst ; 47(1): 80, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37522981

ABSTRACT

With the increased availability of magnetic resonance imaging (MRI) and a progressive rise in the frequency of cardiac device implantation, there is an increased chance that patients with implanted cardiac devices require MRI examination during their lifetime. Though MRI is generally contraindicated in patients who have undergone pacemaker implantation with electronic circuits, the recent introduction of MR Conditional pacemaker allows physicians to take advantage of MRI to assess these patients during diagnosis and treatment. When MRI examinations of patients with pacemaker are requested, physicians must confirm whether the device is a conventional pacemaker or an MR Conditional pacemaker by reviewing chest radiographs or the electronic medical records (EMRs). The purpose of this study was to evaluate the utility of a deep convolutional neural network (DCNN) trained to detect pacemakers on chest radiographs and to determine the device's subclassification. The DCNN perfectly detected pacemakers on chest radiographs and the accuracy of the subclassification of pacemakers using the internal and external test datasets were 100.0% (n = 106/106) and 90.1% (n = 279/308). The DCNN can be applied to the radiologic workflow for double-checking purposes, thereby improving patient safety during MRI and preventing busy physicians from making errors.


Subject(s)
Deep Learning , Pacemaker, Artificial , Humans , Patient Safety , Magnetic Resonance Imaging , Neural Networks, Computer
16.
Front Pharmacol ; 14: 1130257, 2023.
Article in English | MEDLINE | ID: mdl-37274096

ABSTRACT

Background: The demand for complementary and alternative medicine for the management of functional dyspepsia (FD) is increasing due to the insufficient efficacy of conventional treatment options. In Asia, the Chinese herbal medicine formula Banxia-xiexin tang (BXT) has been used to treat FD. Methods: We searched 11 digital medical databases on 1 September 2021. Randomized controlled trials (RCTs) that investigated the efficacy of BXT or combination therapy (BXT plus Western medicines) for FD were selected. The outcome parameters were total clinical efficacy rate (TCE), motilin level, symptom checklist-90-revised (SCL-90-R), and visual analog scale (VAS) for dyspepsia and adverse events. Cochrane risk of bias tool 2.0 (RoB 2) was used for the quality assessment of included studies. Results: The meta-analysis comprised 57 RCTs with 5,525 participants. BXT was more efficacious, with a higher TCE than Western medicine. Combination therapy (BXT plus Western medicine) also resulted in a higher TCE than Western medicine. Combination therapy improved motilin levels and psychological symptoms to a greater extent than Western medicine, evidenced by a higher SCL-90-R score. However, no significant difference in VAS scores was observed between the BXT and placebo groups. BXT and combination therapy were associated with fewer adverse events than Western medicine or placebo. Conclusion: Our findings suggest that BXT and its combination therapy may be an effective and safe alternative treatment for FD. More RCTs with better methodologies are required to strengthen this evidence. Systematic Review Registration: [https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019123285], identifier [CRD42019123285].

17.
Arch Med Sci ; 19(2): 488-498, 2023.
Article in English | MEDLINE | ID: mdl-37034541

ABSTRACT

Introduction: Docosahexaenoic acid (DHA) supplementation has been reported to negatively correlate with cancer cell proliferation and tumour development in many cancer types. Although cumulative evidence has demonstrated the apoptotic effect and cytotoxicity of DHA against tumour development in many cell types, the precise cellular and biochemical mechanisms of DHA-induced apoptosis in human endometrial cancer cells have not been investigated. Material and methods: MTT assay was performed to confirm the degree of apoptosis by combining treatment with DHA and triacsin C in endometrial cancer cell line. The synergistic effects of triacsin C and DHA were identified by performing flowcytometry and immunoblotting analysis. Results: Combined treatment with DHA and triacsin C significantly induced apoptosis in RL95-2 endometrial carcinoma cells. Combined treatment with 125 µM DHA and 5 µM triacsin C significantly increased the sub-G1 population and apoptotic fragments in endometrial carcinoma cells. It was also demonstrated that DHA and triacsin C induced apoptosis through mitochondrial pathways via caspases-9, -3, and -7 as well as through the extrinsic pathway by activation of caspase-8/BID. Conclusions: Further elucidation of the apoptotic mechanisms involving DHA treatment with ACS ablation could shed light on possible new treatment strategies for endometrial cancer. In addition, further research into the mechanisms of DHA and triacsin C-induced apoptotic mechanisms may lead to the development of therapeutic strategies for endometrial cancer.

18.
Nat Commun ; 14(1): 1891, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37045823

ABSTRACT

The generation of high-purity localized trions, dynamic exciton-trion interconversion, and their spatial modulation in two-dimensional (2D) semiconductors are building blocks for the realization of trion-based optoelectronic devices. Here, we present a method for the all-optical control of the exciton-to-trion conversion process and its spatial distributions in a MoS2 monolayer. We induce a nanoscale strain gradient in a 2D crystal transferred on a lateral metal-insulator-metal (MIM) waveguide and exploit propagating surface plasmon polaritons (SPPs) to localize hot electrons. These significantly increase the electrons and efficiently funnel excitons in the lateral MIM waveguide, facilitating complete exciton-to-trion conversion even at ambient conditions. Additionally, we modulate the SPP mode using adaptive wavefront shaping, enabling all-optical control of the exciton-to-trion conversion rate and trion distribution in a reversible manner. Our work provides a platform for harnessing excitonic quasiparticles efficiently in the form of trions at ambient conditions, enabling high-efficiency photoconversion.

19.
Contemp Clin Trials Commun ; 32: 101078, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36762120

ABSTRACT

Background: Several analgesics have been applied under various protocols to control the moderate-to-severe postoperative pain caused by the surgical extraction of an impacted mandibular third molar. However, a consensus on optimal pain management while minimizing side effects is yet to be reached. Methods: This multi-center, prospective, double-blind, randomized controlled trial aims to evaluate the efficacy and safety of sequential multimodal analgesia combined with postoperative zaltoprofen along with multiple preemptive analgesics. A total of 80 participants with bilateral impacted mandibular third molar from two hospitals were randomized into two groups. Two surgical extractions were performed at one-month intervals, and in a crossover design, celecoxib or tramadol/acetaminophen was administered before one extraction and placebo before the other extraction. Following extraction, all subjects took zaltoprofen for 5 days. The outcome measures included pain at specific times, time and intensity of the first pain onset after extraction, need of rescue drugs, and occurrence and frequency of side effects. Conclusions: This ongoing clinical trial was designed to provide evidence regarding a new protocol for effective postoperative pain management of a commonly performed surgical extraction. The results of this study will provide guidance to clinicians regarding the timing and combination of oral analgesics in various oral surgeries performed under local anesthesia. Trial registration: KCT0005450, registered on October 7, 2020.

20.
Int J Environ Health Res ; 33(12): 1479-1489, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35854640

ABSTRACT

Fine particulate matter (PM2.5) is an air pollutant that causes severe lung injury. We investigated the effects of Jujuboside B (JB), a component of Zizyphi Spinosi Semen, on lung toxicity caused by PM2.5, and we identified the mechanism of its protective effect. Lung injury in an animal model was induced by intratracheal administration of a PM2.5 suspension. After 2 days of PM2.5 pretreatment, mice were administered JB via the tail vein three times over a 2-day period. JB significantly reduced the histological lung damage as well as the lung wet/dry weight ratio. JB also considerably reduced PM2.5-induced autophagy dysfunction, apoptosis, inflammatory cytokine levels, and the number of PM2.5-induced lymphocytes in the bronchial alveolar fluid. We conclude that by regulating TLR2, 4-MyD88, and mTOR-autophagy pathways, JB exerts a protective effect on lung injury. Thus, JB can be used as a potential therapeutic agent for PM2.5-induced lung damage.


Subject(s)
Lung Injury , Saponins , Mice , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung , Saponins/toxicity , Saponins/metabolism , Particulate Matter/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...