Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Chem ; 150: 107586, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38955001

ABSTRACT

Compounds with sulfhydryl substituents and azole compounds exhibit potent anti-tyrosinase potency. 2-Thiobenzothiazole (2-TBT), a hybrid structure of sulfhydryl and azole, exists in two tautomeric forms, with the thione form being predominant according to several studies. 2-TBT derivatives were synthesized as potential tyrosinase inhibitors as the thione tautomeric form has the same N-CS moiety as phenylthiourea (PTU), which is suitable for chelation with the copper ions present in the tyrosinase active site. Eight of the ten 2-TBT derivatives inhibited the monophenolase and diphenolase activities of mushroom tyrosinase, with IC50 values of 0.02-0.83 µM. Kinetic studies and molecular dynamics simulations were performed to determine their mode of action and confirm that the 2-TBT derivatives bind to the tyrosinase active site with high stability. Derivatives 3, 4, 8, and 10 strongly inhibited melanogenesis in B16F10 cells in a pattern similar to the results of cellular tyrosinase inhibition, thereby suggesting that their ability to inhibit melanogenesis was due to their tyrosinase inhibitory activity. In a depigmentation experiment using zebrafish embryos, all 2-TBT derivatives showed better potency than kojic acid, even at 400 to 2000 times lower concentration, and 1 and 10 reduced zebrafish larva pigmentation more strongly than PTU even at 20 times lower concentration. Experiments investigating the changes in tyrosinase inhibitory activity of 2-TBT derivatives in the presence and absence of CuSO4 and their copper chelating ability supported that these derivatives exert their anti-melanogenic effect by chelating the copper ions of tyrosinase. These results suggest that 2-TBT derivatives are promising candidates for the treatment of hyperpigmentation-related disorders.

2.
Bioorg Med Chem ; 98: 117578, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38154348

ABSTRACT

As the ß-phenyl-α,ß-unsaturated carbonyl (PUSC) structure was previously identified to play a key role in tyrosinase inhibition, 14 analogs with a PUSC structure built on a thiazol-4(5H)-one scaffold were synthesized using Knoevenagel condensation to serve as potential tyrosinase inhibitors. Through mushroom tyrosinase inhibition experiments, two analogs 9 and 11 were identified as potent tyrosinase inhibitors, with 11 exhibiting an IC50 value of 0.4 ± 0.01 µM, which indicates its 26-fold greater potency than kojic acid. Kinetic studies using Lineweaver-Burk plots revealed that 9 and 11 are competitive and mixed-type inhibitors, respectively; these kinetic results were supported by docking simulations. According to the B16F10 cell-based experiments, 9 and 11 inhibited melanogenesis more effectively than kojic acid due to their potent cellular tyrosinase inhibitory activity. In addition, analogs 9 and 11 exhibited moderate-to-strong antioxidant capacity, scavenging ABTS+, DPPH, and ROS radicals. In particular, analog 12 with a catechol moiety exhibited very strong ROS-scavenging activity, similar to Trolox. These results suggest that analogs 9 and 11, which exhibit potent tyrosinase inhibitory activity in mushroom and mammalian cells and anti-melanogenic effects in B16F10 cells, are promising antibrowning agents for crops and skin lightening agents for hyperpigmentation-related diseases.


Subject(s)
Agaricales , Monophenol Monooxygenase , Animals , Antioxidants/pharmacology , Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Kinetics , Reactive Oxygen Species , Molecular Docking Simulation , Melanins , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...