Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(2): e0263515, 2022.
Article in English | MEDLINE | ID: mdl-35134059

ABSTRACT

This paper proposes some high-ordered integer-valued auto-regressive time series process of order p (INAR(p)) with Zero-Inflated and Poisson-mixtures innovation distributions, wherein the predictor functions in these mentioned distributions allow for covariate specification, in particular, time-dependent covariates. The proposed time series structures are tested suitable to model the SARs-CoV-2 series in Mauritius which demonstrates excess zeros and hence significant over-dispersion with non-stationary trend. In addition, the INAR models allow the assessment of possible causes of COVID-19 in Mauritius. The results illustrate that the event of Vaccination and COVID-19 Stringency index are the most influential factors that can reduce the locally acquired COVID-19 cases and ultimately, the associated death cases. Moreover, the INAR(7) with Zero-inflated Negative Binomial innovations provides the best fitting and reliable Root Mean Square Errors, based on some short term forecasts. Undeniably, these information will hugely be useful to Mauritian authorities for implementation of comprehensive policies.


Subject(s)
COVID-19/epidemiology , Models, Statistical , Poisson Distribution , SARS-CoV-2/isolation & purification , COVID-19/transmission , COVID-19/virology , Humans , Mauritius/epidemiology , Time Factors
2.
Healthc Anal (N Y) ; 2: 100086, 2022 Nov.
Article in English | MEDLINE | ID: mdl-37520619

ABSTRACT

The COVID-19 series is obviously one of the most volatile time series with lots of spikes and oscillations. The conventional integer-valued auto-regressive time series models (INAR) may be limited to account for such features in COVID-19 series such as severe over-dispersion, excess of zeros, periodicity, harmonic shapes and oscillations. This paper proposes alternative formulations of the classical INAR process by considering the class of high-ordered INAR models with harmonic innovation distributions. Interestingly, the paper further explores the bivariate extension of these high-ordered INARs. South Africa and Mauritius' COVID-19 series are re-scrutinized under the optic of these new INAR processes. Some simulation experiments are also executed to validate the new models and their estimation procedures.

3.
PLoS One ; 15(7): e0235730, 2020.
Article in English | MEDLINE | ID: mdl-32649713

ABSTRACT

Mauritius stands as one of the few countries in the world to have controlled the current pandemic, the novel coronavirus 2019 (COVID-19) to a significant extent in a relatively short lapse of time. Owing to uncertainties and crisis amid the pandemic, as an emergency announcement, the World Health Organization (WHO) solicits the help of health authorities, especially, researchers to conduct in-depth research on the evolution and treatment of COVID-19. This paper proposes an integer-valued time series model to analyze the series of COVID-19 cases in Mauritius wherein the corresponding innovation term accommodates for covariate specification. In this set-up, sanitary curfew followed by sanitization and sensitization campaigns, time factor and safe shopping guidelines have been tested as the most significant variables, unlike climatic conditions. The over-dispersion estimates and the serial auto-correlation parameter are also statistically significant. This study also confirms the presence of some unobservable effects like the pathological genesis of the novel coronavirus and environmental factors which contribute to rapid propagation of the zoonotic virus in the community. Based on the proposed COM-Poisson mixture models, we could predict the number of COVID-19 cases in Mauritius. The forecasting results provide satisfactory mean squared errors. Such findings will subsequently encourage the policymakers to implement strict precautionary measures in terms of constant upgrading of the current health care and wellness system and re-enforcement of sanitary obligations.


Subject(s)
Communicable Disease Control , Coronavirus Infections/epidemiology , Pneumonia, Viral/epidemiology , COVID-19 , Communicable Disease Control/legislation & jurisprudence , Health Policy , Human Activities , Humans , Mauritius/epidemiology , Models, Biological , Pandemics , Regression Analysis , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...