Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Phys Eng Express ; 9(5)2023 08 09.
Article in English | MEDLINE | ID: mdl-37527634

ABSTRACT

Objectives.In this paper, the features of physiological signals of healthy dataset are extracted using the linear and non-linear techniques, and a comparison has been made on healthy young and old subjects to study the aging and gender-related changes in the contribution of Heart Rate (HR), Blood Pressure (BP), and Respiration (RESP).Methods. To quantify the coupling changes in cardiovascular, cardiorespiratory, and vasculorespiratory complexity, an information domain approach based on compensated transfer entropy (cTE) is proposed.Result. The results show that there is a substantial decrease in the flow of information from BP tro the time interval between successive R-peaks (RR) and from RR to BP. There is also a significant decrease in the flow of information from RESP to BP and RESP to RR but there is no significant change in the information flow from BP to RESP and RR to RESP.Conclusion. We have done linear and non-linear analysis on the healthy datasets of young and old subjects. As already existed techniques lacks in studying complex behaviours of electrophysiological signals so to overcome these limitations, we have proposed compensated transfer entropy (cTE). We conducted an investigation to determine the degree to which recordings of RESP, BP, and HR can be utilized to predict changes in the other parameters. Specifically, the proposed analysis examined the relationship between these variables and assessed their consistency across different age groups and genders. By analyzing the data, we aimed to gain insights into the interdependencies and predictive potential of these physiological measures in relation to each other.


Subject(s)
Cardiovascular System , Heart , Humans , Male , Female , Blood Pressure/physiology , Aging/physiology , Respiration
2.
Plant Physiol Biochem ; 186: 266-278, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35932651

ABSTRACT

Plants leave testimonies of undergoing physical state by depicting distinct variations in their electrophysiological data. Adequate nutrition of plants signifies their role in the growth and a plentiful harvest. Plant signal data carries enough information to detect and analyse nutrient deficiency. Classification of nutrient deficiencies through signal decomposition and bilevel measurements has not been reported earlier. The proposed work explores tomato plants in four-time cycles (Early Morning, Morning, After Noon, Night) of macronutrients Calcium (Ca), Nitrogen (N) and micronutrients Manganese (Mn), Iron (Fe). Using the Empirical Mode Decomposition method (EMD), signals are decomposed into Intrinsic Mode Functions (IMF) in 10-levels. Further, Intrinsic mode functions are grouped into two clusters to extract descriptive data statistics and bi-level measurements. Then a novel sample selection method is proposed to achieve a better classification rate by reducing sample space. A binary classification model is built to train and test 15 features individually using discriminant analysis and naïve-Bayes classifier variants. The reported results achieved a classification rate up to 98% after 5-fold cross-validation. Attained findings endorse novel pathways for detection and classification of nutrient deficiencies in the early stages, consequently promoting prevention and treatment approaches earliest to the appearance of symptoms, also helping to enhance plant growth.


Subject(s)
Electroencephalography , Solanum lycopersicum , Bayes Theorem , Electroencephalography/methods , Nutrients
3.
Optik (Stuttg) ; 246: 167780, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34393275

ABSTRACT

Due to COVID-19, demand for Chest Radiographs (CXRs) have increased exponentially. Therefore, we present a novel fully automatic modified Attention U-Net (CXAU-Net) multi-class segmentation deep model that can detect common findings of COVID-19 in CXR images. The architectural design of this model includes three novelties: first, an Attention U-net model with channel and spatial attention blocks is designed that precisely localize multiple pathologies; second, dilated convolution applied improves the sensitivity of the model to foreground pixels with additional receptive fields valuation, and third a newly proposed hybrid loss function combines both area and size information for optimizing model. The proposed model achieves average accuracy, DSC, and Jaccard index scores of 0.951, 0.993, 0.984, and 0.921, 0.985, 0.973 for image-based and patch-based approaches respectively for multi-class segmentation on Chest X-ray 14 dataset. Also, average DSC and Jaccard index scores of 0.998, 0.989 are achieved for binary-class segmentation on the Japanese Society of Radiological Technology (JSRT) CXR dataset. These results illustrate that the proposed model outperformed the state-of-the-art segmentation methods.

4.
J Med Syst ; 41(12): 187, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29043502

ABSTRACT

This paper presents a patient's confidential data hiding scheme in electrocardiogram (ECG) signal and its subsequent wireless transmission. Patient's confidential data is embedded in ECG (called stego-ECG) using chaotic map and the sample value difference approach. The sample value difference approach effectually hides the patient's confidential data in ECG sample pairs at the predefined locations. The chaotic map generates these predefined locations through the use of selective control parameters. Subsequently, the wireless transmission of the stego-ECG is analyzed using the Orthogonal Frequency Division Multiplexing (OFDM) system in a Rayleigh fading scenario for telemedicine applications. Evaluation of proposed method on all 48 records of MIT-BIH arrhythmia ECG database demonstrates that the embedding does not alter the diagnostic features of cover ECG. The secret data imperceptibility in stego-ECG is evident through the statistical and clinical performance measures. Statistical measures comprise of Percentage Root-mean-square Difference (PRD), Peak Signal to Noise Ratio (PSNR), and Kulback-Leibler Divergence (KL-Div), etc. while clinical metrics includes wavelet Energy Based Diagnostic Distortion (WEDD) and Wavelet based Weighted PRD (WWPRD). The various channel Signal-to-Noise Ratio scenarios are simulated for wireless communication of stego-ECG in OFDM system. The proposed method over all the 48 records of MIT-BIH arrhythmia database resulted in average, PRD = 0.26, PSNR = 55.49, KL-Div = 3.34 × 10-6, WEDD = 0.02, and WWPRD = 0.10 with secret data size of 21Kb. Further, a comparative analysis of proposed method and recent existing works was also performed. The results clearly, demonstrated the superiority of proposed method.


Subject(s)
Algorithms , Confidentiality/standards , Electrocardiography/methods , Signal Processing, Computer-Assisted , Telemetry/methods , Computer Security , Humans , Signal-To-Noise Ratio , Telemetry/standards
5.
Australas Phys Eng Sci Med ; 39(4): 833-855, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27613706

ABSTRACT

In this paper, a joint use of the discrete cosine transform (DCT), and differential pulse code modulation (DPCM) based quantization is presented for predefined quality controlled electrocardiogram (ECG) data compression. The formulated approach exploits the energy compaction property in transformed domain. The DPCM quantization has been applied to zero-sequence grouped DCT coefficients that were optimally thresholded via Regula-Falsi method. The generated sequence is encoded using Huffman coding. This encoded series is further converted to a valid ASCII code using the standard codebook for transmission purpose. Such a coded series possesses inherent encryption capability. The proposed technique is validated on all 48 records of standard MIT-BIH database using different measures for compression and encryption. The acquisition time has been taken in accordance to that existed in literature for the fair comparison with contemporary state-of-art approaches. The chosen measures are (1) compression ratio (CR), (2) percent root mean square difference (PRD), (3) percent root mean square difference without base (PRD1), (4) percent root mean square difference normalized (PRDN), (5) root mean square (RMS) error, (6) signal to noise ratio (SNR), (7) quality score (QS), (8) entropy, (9) Entropy score (ES) and (10) correlation coefficient (r x,y ). Prominently the average values of CR, PRD and QS were equal to 18.03, 1.06, and 17.57 respectively. Similarly, the mean encryption metrics i.e. entropy, ES and r x,y were 7.9692, 0.9962 and 0.0113 respectively. The novelty in combining the approaches is well justified by the values of these metrics that are significantly higher than the comparison counterparts.


Subject(s)
Algorithms , Computer Security , Data Compression , Electrocardiography/methods , Databases, Factual , Entropy , Humans , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...