Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13141, 2024 06 07.
Article in English | MEDLINE | ID: mdl-38849441

ABSTRACT

Obesity and food addiction are associated with distinct brain signatures related to reward processing, and early life adversity (ELA) also increases alterations in these same reward regions. However, the neural mechanisms underlying the effect of early life adversity on food addiction are unknown. Therefore, the aim of this study was to examine the interactions between ELA, food addiction, and brain morphometry in individuals with obesity. 114 participants with high body mass index (BMI) underwent structural MRIs, and completed several questionnaires (e.g., Yale Food Addiction Scale (YFAS), Brief Resilience Scale (BRS), Early Traumatic Inventory (ETI)). Freesurfer 6 was applied to generate the morphometry of brain regions. A multivariate pattern analysis was used to derive brain morphometry patterns associated with food addiction. General linear modeling and mediation analyses were conducted to examine the effects of ELA and resilience on food addiction in individuals with obesity. Statistical significance was determined at a level of p < 0.05. High levels of ELA showed a strong association between reward control brain signatures and food addiction (p = 0.03). Resilience positively mediated the effect of ELA on food addiction (B = 0.02, p = 0.038). Our findings suggest that food addiction is associated with brain signatures in motivation and reward processing regions indicative of dopaminergic dysregulation and inhibition of cognitive control regions. These mechanistic variabilities along with early life adversity suggest increased vulnerability to develop food addiction and obesity in adulthood, which can buffer by the neuroprotective effects of resilience, highlighting the value of incorporating cognitive appraisal into obesity therapeutic regimens.


Subject(s)
Body Mass Index , Brain , Food Addiction , Magnetic Resonance Imaging , Obesity , Humans , Female , Male , Food Addiction/psychology , Brain/diagnostic imaging , Brain/pathology , Brain/physiopathology , Adult , Obesity/psychology , Obesity/pathology , Adverse Childhood Experiences/psychology , Reward , Young Adult , Middle Aged , Surveys and Questionnaires , Resilience, Psychological
2.
Physiol Plant ; 176(2): e14285, 2024.
Article in English | MEDLINE | ID: mdl-38606764

ABSTRACT

AIMS: Geophytic plants have evolved to develop underground storage organs (USO) in the active growing season to withstand harsh environments as well as to coordinate growth and reproduction when conditions are favourable. Saffron is an autumn flowering geophyte and an expensive spice crop restricted to certain geographical locations in the world. Saffron, being sterile, does not produce seeds and thus propagates only through corms, the quality of which determines its yield. Corm development in saffron is unexplored and the underlying molecular mechanism is still elusive. In this study, we performed an extensive characterisation of the transcriptional dynamics in the source (leaf) and sink (corm) tissues during corm development in saffron. KEY RESULTS: Via morphological and transcriptome studies, we identified molecular factors regulating corm development process in saffron, which defined corm development into three stages: the initiation stage demonstrates enhanced vegetative growth aboveground and swelling of shoot base belowground due to active cell division & carbohydrate storage; the bulking stage comprises of increased source and sink strength, active photosynthesis, circadian gating and starch accumulation; the maturation stage represents reduced source and sink strength, lowered photosynthesis, sugar transport, starch synthesis and cell cycle arrest. UTILITY: The global view of transcriptional changes in source and sink identifies similar and new molecular factors involved in the saffron corm development process compared to USO formation in other geophytes and provides a valuable resource for dissecting the molecular network underlying the corm development. We propose a hypothetical model based on data analysis, of how molecular factors via environmental cues can regulate the corm development process in saffron.


Subject(s)
Crocus , Crocus/genetics , Crocus/metabolism , Transcriptome/genetics , Plant Leaves , Starch/metabolism
3.
Genes (Basel) ; 14(9)2023 08 30.
Article in English | MEDLINE | ID: mdl-37761876

ABSTRACT

Complex interactions between gene variants and environmental risk factors underlie the pathophysiological pathways in major psychiatric disorders. Autism Spectrum Disorder is a neuropsychiatric condition in which susceptible alleles along with epigenetic states contribute to the mutational landscape of the ailing brain. The present work reviews recent evolutionary, molecular, and epigenetic mechanisms potentially linked to the etiology of autism. First, we present a clinical vignette to describe clusters of maladaptive behaviors frequently diagnosed in autistic patients. Next, we microdissect brain regions pertinent to the nosology of autism, as well as cell networks from the bilateral body plan. Lastly, we catalog a number of pathogenic environments associated with disease risk factors. This set of perspectives provides emerging insights into the dynamic interplay between epigenetic and environmental variation in the development of Autism Spectrum Disorders.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autism Spectrum Disorder/genetics , Alleles , Biological Evolution , Epigenesis, Genetic
4.
Brain Commun ; 5(2): fcad098, 2023.
Article in English | MEDLINE | ID: mdl-37091587

ABSTRACT

Investigating sex as a biological variable is key to determine obesity manifestation and treatment response. Individual neuroimaging modalities have uncovered mechanisms related to obesity and altered ingestive behaviours. However, few, if any, studies have integrated data from multi-modal brain imaging to predict sex-specific brain signatures related to obesity. We used a data-driven approach to investigate how multi-modal MRI and clinical features predict a sex-specific signature of participants with high body mass index (overweight/obese) compared to non-obese body mass index in a sex-specific manner. A total of 78 high body mass index (55 female) and 105 non-obese body mass index (63 female) participants were enrolled in a cross-sectional study. All participants classified as high body mass index had a body mass index greater than 25 kg/m2 and non-obese body mass index had a body mass index between 19 and 20 kg/m2. Multi-modal neuroimaging (morphometry, functional resting-state MRI and diffusion-weighted scan), along with a battery of behavioural and clinical questionnaires were acquired, including measures of mood, early life adversity and altered ingestive behaviours. A Data Integration Analysis for Biomarker discovery using Latent Components was conducted to determine whether clinical features, brain morphometry, functional connectivity and anatomical connectivity could accurately differentiate participants stratified by obesity and sex. The derived models differentiated high body mass index against non-obese body mass index participants, and males with high body mass index against females with high body mass index obtaining balanced accuracies of 77 and 75%, respectively. Sex-specific differences within the cortico-basal-ganglia-thalamic-cortico loop, the choroid plexus-CSF system, salience, sensorimotor and default-mode networks were identified, and were associated with early life adversity, mental health quality and greater somatosensation. Results showed multi-modal brain signatures suggesting sex-specific cortical mechanisms underlying obesity, which fosters clinical implications for tailored obesity interventions based on sex.

5.
Curr Obes Rep ; 12(2): 163-174, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36933153

ABSTRACT

PURPOSE OF REVIEW: To summarize the results of adult obesity neuroimaging studies (structural, resting-state, task-based, diffusion tensor imaging) published from 2010, with a focus on the treatment of sex as an important biological variable in the analysis, and identify gaps in sex difference research. RECENT FINDINGS: Neuroimaging studies have shown obesity-related changes in brain structure, function, and connectivity. However, relevant factors such as sex are often not considered. We conducted a systematic review and keyword co-occurrence analysis. Literature searches identified 6281 articles, of which 199 met inclusion criteria. Among these, only 26 (13%) considered sex as an important variable in the analysis, directly comparing the sexes (n = 10; 5%) or providing single-sex/disaggregated data (n = 16, 8%); the remaining studies controlled for sex (n = 120, 60%) or did not consider sex in the analysis (n = 53, 27%). Synthesizing sex-based results, obesity-related parameters (e.g., body mass index, waist circumference, obese status) may be generally associated with more robust morphological alterations in men and more robust structural connectivity alterations in women. Additionally, women with obesity generally expressed increased reactivity in affect-related regions, while men with obesity generally expressed increased reactivity in motor-related regions; this was especially true under a fed state. The keyword co-occurrence analysis indicated that sex difference research was especially lacking in intervention studies. Thus, although sex differences in the brain associated with obesity are known to exist, a large proportion of the literature informing the research and treatment strategies of today has not specifically examined sex effects, which is needed to optimize treatment.


Subject(s)
Diffusion Tensor Imaging , Obesity , Adult , Female , Humans , Male , Obesity/diagnostic imaging , Body Mass Index , Brain/diagnostic imaging , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...