Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Nature ; 595(7865): 66-69, 2021 07.
Article in English | MEDLINE | ID: mdl-34194020

ABSTRACT

The Laacher See eruption (LSE) in Germany ranks among Europe's largest volcanic events of the Upper Pleistocene1,2. Although tephra deposits of the LSE represent an important isochron for the synchronization of proxy archives at the Late Glacial to Early Holocene transition3, uncertainty in the age of the eruption has prevailed4. Here we present dendrochronological and radiocarbon measurements of subfossil trees that were buried by pyroclastic deposits that firmly date the LSE to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. The revised age of the LSE necessarily shifts the chronology of European varved lakes5,6 relative to the Greenland ice core record, thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought. Our results synchronize the onset of the Younger Dryas across the North Atlantic-European sector, preclude a direct link between the LSE and Greenland Stadial-1 cooling7, and suggest a large-scale common mechanism of a weakened Atlantic Meridional Overturning Circulation under warming conditions8-10.

4.
Proc Natl Acad Sci U S A ; 117(15): 8410-8415, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32229554

ABSTRACT

Calendar-dated tree-ring sequences offer an unparalleled resource for high-resolution paleoenvironmental reconstruction. Where such records exist for a few limited geographic regions over the last 8,000 to 12,000 years, they have proved invaluable for creating precise and accurate timelines for past human and environmental interactions. To expand such records across new geographic territory or extend data for certain regions further backward in time, new applications must be developed to secure "floating" (not yet absolutely dated) tree-ring sequences, which cannot be assigned single-calendar year dates by standard dendrochronological techniques. This study develops two approaches to this problem for a critical floating tree-ring chronology from the East Mediterranean Bronze-Iron Age. The chronology is more closely fixed in time using annually resolved patterns of 14C, modulated by cosmic radiation, between 1700 and 1480 BC. This placement is then tested using an anticorrelation between calendar-dated tree-ring growth responses to climatically effective volcanism in North American bristlecone pine and the Mediterranean trees. Examination of the newly dated Mediterranean tree-ring sequence between 1630 and 1500 BC using X-ray fluorescence revealed an unusual calcium anomaly around 1560 BC. While requiring further replication and analysis, this anomaly merits exploration as a potential marker for the eruption of Thera.

5.
Sci Rep ; 8(1): 13980, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30228341

ABSTRACT

Nearly 13,000 years ago, the warming trend into the Holocene was sharply interrupted by a reversal to near glacial conditions. Climatic causes and ecological consequences of the Younger Dryas (YD) have been extensively studied, however proxy archives from the Mediterranean basin capturing this period are scarce and do not provide annual resolution. Here, we report a hydroclimatic reconstruction from stable isotopes (δ18O, δ13C) in subfossil pines from southern France. Growing before and during the transition period into the YD (12 900-12 600 cal BP), the trees provide an annually resolved, continuous sequence of atmospheric change. Isotopic signature of tree sourcewater (δ18Osw) and estimates of relative air humidity were reconstructed as a proxy for variations in air mass origin and precipitation regime. We find a distinct increase in inter-annual variability of sourcewater isotopes (δ18Osw), with three major downturn phases of increasing magnitude beginning at 12 740 cal BP. The observed variation most likely results from an amplified intensity of North Atlantic (low δ18Osw) versus Mediterranean (high δ18Osw) precipitation. This marked pattern of climate variability is not seen in records from higher latitudes and is likely a consequence of atmospheric circulation oscillations at the margin of the southward moving polar front.


Subject(s)
Climate Change , Fossils , Geologic Sediments/analysis , Oxygen Isotopes/analysis , Radiometric Dating , Trees/physiology , Mediterranean Region , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...