Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 108(3-2): 035304, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37849190

ABSTRACT

Studies of multiphase fluids utilizing the lattice Boltzmann method (LBM) are typically severely restricted by the number of components or chemical species being modeled. This restriction is particularly pronounced for multiphase systems exhibiting partial miscibility and significant interfacial mass exchange, which is a common occurrence in realistic multiphase systems. Modeling such systems becomes increasingly complex as the number of chemical species increases due to the increased role of molecular interactions and the types of thermodynamic behavior that become possible. The recently introduced fugacity-based LBM [Soomro et al., Phys. Rev. E 107, 015304 (2023)2470-004510.1103/PhysRevE.107.015304] has provided a thermodynamically consistent modeling platform for multicomponent, partially miscible LBM simulations. However, until now, this fugacity-based LB model had lacked a comprehensive demonstration of its ability to accurately reproduce thermodynamic behavior beyond binary mixtures and to remove any restrictions in a number of components for multiphase LBM. In this paper we closely explore these fugacity-based LBM capabilities by showcasing comprehensive, thermodynamically consistent simulations of multiphase mixtures of up to ten chemical components. The paper begins by validating the model against the Young-Laplace equation for a droplet composed of three components. The model is then applied to study mixtures with a range of component numbers from one to six, showing agreement with rigorous thermodynamic predictions and demonstrating linear scaling of computational time with the number of components. We further investigate ternary systems in detail by exploring a wide range of temperature, pressure, and overall composition conditions to produce various characteristic ternary diagrams. In addition, the model is shown to be unrestricted in the number of phases as demonstrated through simulations of a three-component three-phase equilibrium case. The paper concludes by demonstrating simulations of a ten-component, realistic hydrocarbon mixture, achieving excellent agreement with thermodynamics for both flat interface vapor-liquid equilibrium and curved interface spinodal decomposition cases. This study represents a significant expansion of the scope and capabilities of multiphase LBM simulations that encompass multiphase systems of keen interest in engineering.

2.
Phys Rev E ; 107(1-2): 015304, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797960

ABSTRACT

The free-energy model can extend the lattice Boltzmann method to multiphase systems. However, there is a lack of models capable of simulating multicomponent multiphase fluids with partial miscibility. In addition, existing models cannot be generalized to honor thermodynamic information provided by any multicomponent equation of state of choice. In this paper, we introduce a free-energy lattice Boltzmann model where the forcing term is determined by the fugacity of the species, the thermodynamic property that connects species partial pressure to chemical potential calculations. By doing so, we are able to carry out multicomponent multiphase simulations of partially miscible fluids and generalize the methodology for use with any multicomponent equation of state of interest. We test this fugacity-based lattice Boltzmann method for the cases of vapor-liquid equilibrium for two- and three-component mixtures in various temperature and pressure conditions. We demonstrate that the model is able to reliably reproduce phase densities and compositions as predicted by multicomponent thermodynamics and can reproduce different characteristic pressure-composition and temperature-composition envelopes with a high degree of accuracy. We also demonstrate that the model can offer accurate predictions under dynamic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...