Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Talanta ; 274: 125954, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38599113

ABSTRACT

Complex matrices such as soil have a range of measurable characteristics, and thus data to describe them can be considered multidimensional. These characteristics can be strongly influenced by factors that introduce confounding effects that hinder analyses. Traditional statistical approaches lack the flexibility and granularity required to adequately evaluate such matrices, particularly those with large dataset of varying data types (i.e. quantitative non-compositional, quantitative compositional). We present a statistical workflow designed to effectively analyse complex, multidimensional systems, even in the presence of confounding variables. The developed methodology involves exploratory analysis to identify the presence of confounding variables, followed by data decomposition (including strategies for both compositional and non-compositional quantitative data) to minimise the influence of these confounding factors such as sampling site/location. These data processing methods then allow for common patterns to be highlighted in the data, including the identification of biomarkers and determination of non-trivial associations between variables. We demonstrate the utility of this statistical workflow by jointly analysing the chemical composition and fungal biodiversity of New Zealand vineyard soils that have been managed with either organic low-input or conventional input approaches. By applying this pipeline, we were able to identify biomarkers that distinguish viticultural soil from both approaches and also unearth links and associations between the chemical and metagenomic profiles. While soil is an example of a system that can require this type of statistical methodology, there are a range of biological and ecological systems that are challenging to analyse due to the complex interplay of global and local effects. Utilising our developed pipeline will greatly enhance the way that these systems can be studied and the quality and impact of insight gained from their analysis.


Subject(s)
Soil , Soil/chemistry , Soil Microbiology , Fungi , Biodiversity , New Zealand
2.
Sci Rep ; 14(1): 7984, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38575630

ABSTRACT

The extent of surgical resection is an important prognostic factor in the treatment of patients with glioblastoma. Optical coherence tomography (OCT) imaging is one of the adjunctive methods available to achieve the maximal surgical resection. In this study, the tumor margins were visualized with the OCT image obtained from a murine glioma model. A commercialized human glioblastoma cell line (U-87) was employed to develop the orthotopic murine glioma model. A swept-source OCT (SS-OCT) system of 1300 nm was used for three-dimensional imaging. Based on the OCT intensity signal, which was obtained via accumulation of each A-scan data, an en-face optical attenuation coefficient (OAC) map was drawn. Due to the limited working distance of the focused beam, OAC values decrease with depth, and using the OAC difference in the superficial area was chosen to outline the tumor boundary, presenting a challenge in analyzing the tumor margin along the depth direction. To overcome this and enable three-dimensional tumor margin detection, we converted the en-face OAC map into an en-face difference map with x- and y-directions and computed the normalized absolute difference (NAD) at each depth to construct a volumetric NAD map, which was compared with the corresponding H&E-stained image. The proposed method successfully revealed the tumor margin along the peripheral boundaries as well as the margin depth. We believe this method can serve as a useful adjunct in glioma surgery, with further studies necessary for real-world practical applications.


Subject(s)
Glioblastoma , Glioma , Humans , Animals , Mice , Glioblastoma/diagnostic imaging , Tomography, Optical Coherence/methods , NAD , Glioma/pathology , Imaging, Three-Dimensional
3.
Biomed Pharmacother ; 173: 115790, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38431436

ABSTRACT

BACKGROUND: Although PD-1 blockade is effective for treating several types of cancer, the efficacy of this agent in glioblastoma is largely limited. To overcome non-responders and the immunosuppressive tumor microenvironment, combinational immunotherapeutic strategies with anti-PD-1 need to be considered. Here, we developed IL-12-secreting mesenchymal stem cells (MSC_IL-12) with glioblastoma tropism and evaluated the therapeutic effects of anti-PD-1, MSC_IL-12, and their combination against glioblastoma. METHODS: Therapeutic responses were evaluated using an immunocompetent mouse orthotopic model. Tumor-infiltrating lymphocytes (TILs) were analyzed using immunofluorescent imaging. Single-cell transcriptome was obtained from mouse brains after treatments. RESULTS: Anti-PD-1 and MSC_IL-12 showed complete tumor remission in 25.0% (4/16) and 23.1% (3/13) of glioblastoma-implanted mice, respectively, and their combination yielded synergistic antitumor efficacy indicated by 50.0% (6/12) of complete tumor remission. Analyses of TILs revealed that anti-PD-1 increased CD8+ T cells, while MSC_IL-12 led to infiltration of CD4+ T cells and NK cells. Both therapies reduced frequencies of Tregs. All these aspects observed in each monotherapy group were superimposed in the combination group. Notably, no tumor growth was observed upon rechallenge in cured mice, indicating long-term immunity against glioblastoma provoked by the therapies. Single-cell RNA-seq data confirmed these results and revealed that the combined treatment led to immune-favorable tumor microenvironment-CD4+, CD8+ T cells, effector memory T cells, and activated microglia were increased, whereas exhausted T cells, Tregs, and M2 polarized microglia were reduced. CONCLUSION: Anti-PD-1 and MSC_IL-12 monotherapies show long-term therapeutic responses, and their combination further enhances antitumor efficacy against glioblastoma via inducing immune-favorable tumor microenvironment.


Subject(s)
Glioblastoma , Mesenchymal Stem Cells , Animals , Mice , Glioblastoma/pathology , CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , Immunotherapy/methods , Interleukin-12 , Cell Line, Tumor , Disease Models, Animal , Mesenchymal Stem Cells/pathology , Tumor Microenvironment
4.
Cancer Cell Int ; 24(1): 36, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238738

ABSTRACT

BACKGROUND: Although meningioma is the most common primary brain tumor, treatments rely on surgery and radiotherapy, and recurrent meningiomas have no standard therapeutic options due to a lack of clinically relevant research models. Current meningioma cell lines or organoids cannot reflect biological features of patient tumors since they undergo transformation along culture and consist of only tumor cells without microenvironment. We aim to establish patient-derived meningioma organoids (MNOs) preserving diverse cell types representative of the tumor microenvironment. METHODS: The biological features of MNOs were evaluated using WST, LDH, and collagen-based 3D invasion assays. Cellular identities in MNOs were confirmed by immunohistochemistry (IHC). Genetic alteration profiles of MNOs and their corresponding parental tumors were obtained by whole-exome sequencing. RESULTS: MNOs were established from four patients with meningioma (two grade 1 and two grade 2) at a 100% succession rate. Exclusion of enzymatic dissociation-reaggregation steps endowed MNOs with original histology and tumor microenvironment. In addition, we used a liquid media culture system instead of embedding samples into Matrigel, resulting in an easy-to-handle, cost-efficient, and time-saving system. MNOs maintained their functionality and morphology after long-term culture (> 9 wk) and repeated cryopreserving-recovery cycles. The similarities between MNOs and their corresponding parental tumors were confirmed by both IHC and whole-exome sequencing. As a representative application, we utilized MNOs in drug screening, and mifepristone, an antagonist of progesterone receptor, showed prominent antitumor efficacy with respect to viability, invasiveness, and protein expression. CONCLUSION: Taken together, our MNO model overcame limitations of previous meningioma models and showed superior resemblance to parental tumors. Thus, our model could facilitate translational research identifying and selecting drugs for meningioma in the era of precision medicine.

5.
J Clin Med ; 12(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37510895

ABSTRACT

PURPOSE: The immune responses of natural killer (NK) cells against cancer cells vary by patient. Killer Ig-like receptors (KIRs), which are some of the major receptors involved in regulating NK cell activity for killing cancer cells, have significant genetic variation. Numerous studies have suggested a potential association between the genetic variation of KIR genes and the risk of development or prognosis of various cancer types. However, an association between genetic variations of KIR genes and glioblastoma (GB) remains uncertain. We sought to evaluate the association of genetic variations of KIRs and their ligand genes with the risk of GB development in Koreans. METHODS: A case-control study was performed to identify the odds ratios (ORs) of KIR genes and Classes A, B, and, C of the human leukocyte antigen (HLA) for GB. The GB group was comprised of 77 patients with newly diagnosed IDH-wildtype GB at our institution, and the control group consisted of 200 healthy Korean volunteers. RESULTS: There was no significant difference in the frequency of KIR genes and KIR haplotypes between the GB and control groups. Genetic variations of KIR-2DL1, 3DL1, and 3DS1 with their ligand genes (HLA-C2, HLA-Bw4/6, and Bw4, respectively) had effects on the risk of GB in Korean patients. The frequency of KIR-2DL1 with HLA-C2 (OR 2.05, CI 1.19-3.52, p = 0.009), the frequency of KIR-3DL1 without HLA-Bw4 (80I) (OR 8.36, CI 4.06-17.18, p < 0.001), and the frequency of KIR-3DL1 with Bw6 (OR 4.54, CI 2.55-8.09, p < 0.001) in the GB group were higher than in the control group. In addition, the frequency of KIR-2DL1 without HLA-C2 (OR 0.44, CI 0.26-0.75, p = 0.003), the frequency of KIR-3DL1 with HLA-Bw4 (80T) (OR 0.13, CI 0.06-0.27, p < 0.001), the frequency of KIR-3DL1 without Bw6 (OR 0.27, CI 0.15-0.49, p < 0.001), and the frequency of KIR-3DS1 with Bw4 (80I) (OR 0.03, CI 0.00-0.50, p < 0.001) in the GB group were lower than in the control group. CONCLUSIONS: This study suggests that genetic variations of KIRs and their ligand genes may affect GB development in the Korean population. Further investigations are needed to demonstrate the different immune responses for GB cells according to genetic variations of KIR genes and their ligand genes.

6.
FEMS Yeast Res ; 232023 01 04.
Article in English | MEDLINE | ID: mdl-36725210

ABSTRACT

There is evidence that vineyard yeast communities are regionally differentiated, but the extent to which this contributes to wine regional distinctiveness is not yet clear. This study represents the first experimental test of the hypothesis that mixed yeast communities-comprising multiple, region-specific, isolates, and species-contribute to regional wine attributes. Yeast isolates were sourced from uninoculated Pinot Noir fermentations from 17 vineyards across Martinborough, Marlborough, and Central Otago in New Zealand. New methodologies for preparing representative, mixed species inoculum from these significantly differentiated regional yeast communities in a controlled, replicable manner were developed and used to inoculate Pinot Noir ferments. A total of 28 yeast-derived aroma compounds were measured in the resulting wines via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry. Yeast community region of origin had a significant impact on wine aroma, explaining ∼10% of the observed variation, which is in line with previous reports of the effects of region-specific Saccharomyces cerevisiae isolates on Sauvignon Blanc ferments. This study shows that regionally distinct, mixed yeast communities can modulate wine aroma compounds in a regionally distinct manner and are in line with the hypothesis that there is a microbial component to regional distinctiveness, or terroir, for New Zealand Pinot Noir.


Subject(s)
Vitis , Wine , Wine/analysis , Saccharomyces cerevisiae , Fermentation , Gas Chromatography-Mass Spectrometry
7.
Oncoimmunology ; 11(1): 2138152, 2022.
Article in English | MEDLINE | ID: mdl-36338147

ABSTRACT

Adoptive transfer of γδ T cells is a novel immunotherapeutic approach to glioblastoma. Few recent studies have shown the efficacy of γδ T cells against glioblastoma, but no previous studies have identified the ligand-receptor interactions between γδ T cells and glioblastoma cells. Here, we identify those ligand-receptor interactions and provide a basis for using γδ T cells to treat glioblastoma. Vγ9Vδ2 T cells were generated from peripheral blood mononuclear cells of healthy donors using artificial antigen presenting cells. MICA, ULBP, PVR and Nectin-2 expression in 10 patient-derived glioblastoma (PDG) cells were analyzed. The in vitro cytokine secretion from the γδ T cells and their cytotoxicity toward the PDG cells were also analyzed. The in vivo anti-tumor effects were evaluated using a U87 orthotopic xenograft glioblastoma model. Expression of ligands and cytotoxicity of the γδ T cells varied among the PDG cells. IFN-γ and Granzyme B secretion levels were significantly higher when γδ Tcells were co-cultured with high-susceptible PDG cells than when they were co-cultured with low-susceptible PDG cells. Cytotoxicity correlated significantly with the expression levels of DNAM-1 ligands of the PDG cells. Blocking DNAM-1 resulted in a decrease in γδ T cell-mediated cytotoxicity and cytokine secretion. Intratumoral injection of γδ T cells showed anti-tumor effects in an orthotopic mouse model. Allogenic γδ T cells showed potent anti-tumor effects on glioblastoma in a DNAM-1 axis dependent manner. Our findings will facilitate the development of clinical strategies using γδ T cells for glioblastoma treatment.


Subject(s)
Glioblastoma , Mice , Animals , Humans , Glioblastoma/therapy , Receptors, Antigen, T-Cell, gamma-delta , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Ligands , T-Lymphocytes , Cytokines
8.
Cells ; 11(15)2022 07 24.
Article in English | MEDLINE | ID: mdl-35892582

ABSTRACT

Amyloid-ß (Aß)-peptide production or deposition in the neuropathology of Alzheimer's disease (AD) was shown to be caused by chronic inflammation that may be induced by infection, but the role of pathogenic-bacteria-related AD-associated Aß is not yet clearly understood. In this study, we validated the hypothesis that there is a correlation between the Aß-protein load and bacterial infection and that there are effects of bacteria, Staphylococcus aureus (S. aureus), on the Aß load in the inflammatory environment of human tonsils. Here, we detected Aß-peptide deposits in human tonsil tissue as well as tissue similar to tonsilloliths found in the olfactory cleft. Interestingly, we demonstrated for the first time the presence of Staphylococcus aureus (S. aureus) clustered around or embedded in the Aß deposits. Notably, we showed that treatment with S. aureus upregulated the Aß-protein load in cultures of human tonsil organoids and brain organoids, showing the new role of S. aureus in Aß-protein aggregation. These findings suggest that a reservoir of Aß and pathogenic bacteria may be a possible therapeutic target in human tonsils, supporting the treatment of antibiotics to prevent the deposition of Aß peptides via the removal of pathogens in the intervention of AD pathogenesis.


Subject(s)
Alzheimer Disease , Bacterial Infections , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Humans , Palatine Tonsil/metabolism , Staphylococcus aureus
9.
Cells ; 11(6)2022 03 18.
Article in English | MEDLINE | ID: mdl-35326480

ABSTRACT

The aim of this study was to validate the use of human brain organoids (hBOs) to investigate the therapeutic potential and mechanism of human-neural-crest-derived nasal turbinate stem cells (hNTSCs) in models of Alzheimer's disease (AD). We generated hBOs from human induced pluripotent stem cells, investigated their characteristics according to neuronal markers and electrophysiological features, and then evaluated the protective effect of hNTSCs against amyloid-ß peptide (Aß1-42) neurotoxic activity in vitro in hBOs and in vivo in a mouse model of AD. Treatment of hBOs with Aß1-42 induced neuronal cell death concomitant with decreased expression of neuronal markers, which was suppressed by hNTSCs cocultured under Aß1-42 exposure. Cytokine array showed a significantly decreased level of osteopontin (OPN) in hBOs with hNTSC coculture compared with hBOs only in the presence of Aß1-42. Silencing OPN via siRNA suppressed Aß-induced neuronal cell death in cell culture. Notably, compared with PBS, hNTSC transplantation significantly enhanced performance on the Morris water maze, with reduced levels of OPN after transplantation in a mouse model of AD. These findings reveal that hBO models are useful to evaluate the therapeutic effect and mechanism of stem cells for application in treating AD.


Subject(s)
Alzheimer Disease , Induced Pluripotent Stem Cells , Neurotoxicity Syndromes , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Organoids/metabolism , Osteopontin , Turbinates/metabolism
10.
PLoS One ; 16(12): e0260618, 2021.
Article in English | MEDLINE | ID: mdl-34882724

ABSTRACT

PURPOSE: Immune responses for cancer cells can be altered according to genetic variation of human leukocyte antigen (HLA). Association of HLA polymorphism with risk of various cancer types is well known. However, the association between HLA and glioblastoma (GBM) remains uncertain. We sought to evaluate the association of HLA polymorphism with risk of GBM development in Koreans. MATERIALS AND METHODS: A case-control study was performed to identify the odds ratios (OR) of HLA class I and II genes for GBM. The control group consisted of 142 healthy Korean volunteers, and the GBM group was 80 patients with newly diagnosed GBM at our institution. HLA class I (-A, -B, and-C) and class II (-DR, -DQ, and-DP) genotyping was performed by high-resolution polymerase chain reaction (PCR)-sequence-based typing (PCR-SBT) methods. RESULTS: There were significantly decreased frequencies of HLA-A*26:02 (OR 0.22 CI 0.05-0.98), HLA-C*08:01 (OR 0.29 CI 0.10-0.87), and HLA-DRB1*08:03 (OR 0.32 CI 0.11-0.98), while there was significantly increased frequency of HLA-C*04:01 (OR 2.29 CI 1.05-4.97). In analysis of haplotypes, the frequency of DRB1*14:05-DQB1*05:03 was significantly decreased (OR 0.22 CI 0.05-0.98). CONCLUSION: This study suggests that genetic variations of HLA may affect GBM development in Koreans. Further investigations with larger sample sizes are needed to delineate any potential role of the HLA polymorphisms in the pathogenesis of GBM development.


Subject(s)
Asian People/genetics , Glioblastoma/genetics , HLA-A Antigens/genetics , HLA-C Antigens/genetics , HLA-DRB1 Chains/genetics , Adult , Aged , Aged, 80 and over , Case-Control Studies , Female , Genetic Association Studies , Genotyping Techniques , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Republic of Korea , Young Adult
12.
Stem Cell Res Ther ; 12(1): 402, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256823

ABSTRACT

BACKGROUND: Stem cell transplantation is a fascinating therapeutic approach for the treatment of many neurodegenerative disorders; however, clinical trials using stem cells have not been as effective as expected based on preclinical studies. The aim of this study is to validate the hypothesis that human neural crest-derived nasal turbinate stem cells (hNTSCs) are a clinically promising therapeutic source of adult stem cells for the treatment of Alzheimer's disease (AD). METHODS: hNTSCs were evaluated in comparison with human bone marrow-derived mesenchymal stem cells (hBM-MSCs) according to the effect of transplantation on AD pathology, including PET/CT neuroimaging, immune status indicated by microglial numbers and autophagic capacity, neuronal survival, and cognition, in a 5 × FAD transgenic mouse model of AD. RESULTS: We demonstrated that hNTSCs showed a high proliferative capacity and great neurogenic properties in vitro. Compared with hBM-MSC transplantation, hNTSC transplantation markedly reduced Aß42 levels and plaque formation in the brains of the 5 × FAD transgenic AD mice on neuroimaging, concomitant with increased survival of hippocampal and cortex neurons. Moreover, hNTSCs strongly modulated immune status by reducing the number of microglia and the expression of the inflammatory cytokine IL-6 and upregulating autophagic capacity at 7 weeks after transplantation in AD models. Notably, compared with transplantation of hBM-MSCs, transplantation of hNTSCs significantly enhanced performance on the Morris water maze, with an increased level of TIMP2, which is necessary for spatial memory in young mice and neurons; this difference could be explained by the high engraftment of hNTSCs after transplantation. CONCLUSION: The reliable evidence provided by these findings reveals a promising therapeutic effect of hNTSCs and indicates a step forward the clinical application of hNTSCs in patients with AD.


Subject(s)
Alzheimer Disease , Mesenchymal Stem Cell Transplantation , Adult , Alzheimer Disease/therapy , Animals , Cognition , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Neural Crest , Positron Emission Tomography Computed Tomography , Stem Cells , Turbinates
13.
G3 (Bethesda) ; 11(1)2021 01 18.
Article in English | MEDLINE | ID: mdl-33561237

ABSTRACT

Saccharomyces cerevisiae is extensively utilized for commercial fermentation, and is also an important biological model; however, its ecology has only recently begun to be understood. Through the use of whole-genome sequencing, the species has been characterized into a number of distinct subpopulations, defined by geographical ranges and industrial uses. Here, the whole-genome sequences of 104 New Zealand (NZ) S. cerevisiae strains, including 52 novel genomes, are analyzed alongside 450 published sequences derived from various global locations. The impact of S. cerevisiae novel range expansion into NZ was investigated and these analyses reveal the positioning of NZ strains as a subgroup to the predominantly European/wine clade. A number of genomic differences with the European group correlate with range expansion into NZ, including 18 highly enriched single-nucleotide polymorphism (SNPs) and novel Ty1/2 insertions. While it is not possible to categorically determine if any genetic differences are due to stochastic process or the operations of natural selection, we suggest that the observation of NZ-specific copy number increases of four sugar transporter genes in the HXT family may reasonably represent an adaptation in the NZ S. cerevisiae subpopulation, and this correlates with the observations of copy number changes during adaptation in small-scale experimental evolution studies.


Subject(s)
Saccharomyces cerevisiae , Wine , Fermentation , Genome, Fungal , Genomics , New Zealand , Saccharomyces cerevisiae/genetics
14.
Oncol Rep ; 45(3): 869-878, 2021 03.
Article in English | MEDLINE | ID: mdl-33469674

ABSTRACT

Human bone marrow­derived mesenchymal stem cells secreting tumor necrosis factor­related apoptosis­inducing ligand (MSCs­TRAIL) have demonstrated effective anti­tumor activity against various tumors including lung, pancreatic and prostate tumors, although several tumor types are not responsive. In such case, other reagents may decrease tumor growth via TRAIL­mediated cell death. The present study aimed to examine the effectiveness of valproic acid (VPA) in enhancing the efficacy of TRAIL, which was delivered using MSCs. Moreover, the present study examined the induced tumor tropism of MSCs via cell viability and migration assays. Combination treatment with VPA and MSCs­TRAIL enhanced the glioma therapeutic effect by increasing death receptor 5 and caspase activation. Migration assays identified increased MSC migration in VPA and MSCs­TRAIL­treated glioma cells and in the tumor site in glioma­bearing mice compared with VPA or MSC­TRAIL treatment alone. In vivo experiments demonstrated that MSC­based TRAIL gene delivery to VPA­treated tumors had greater therapeutic efficacy compared with treatment with each agent alone. These findings suggested that VPA treatment increased the therapeutic efficacy of MSC­TRAIL via TRAIL­induced apoptosis and enhanced tropism of MSCs, which may offer a useful strategy for tumor gene therapy.


Subject(s)
Brain Neoplasms/therapy , Glioma/therapy , Mesenchymal Stem Cell Transplantation/methods , TNF-Related Apoptosis-Inducing Ligand/genetics , Valproic Acid/administration & dosage , Adenoviridae/genetics , Animals , Brain Neoplasms/pathology , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Movement , Cell Survival , Coculture Techniques , Combined Modality Therapy/methods , Genetic Therapy/methods , Genetic Vectors/genetics , Glioma/pathology , Humans , Mesenchymal Stem Cells/metabolism , Mice , Signal Transduction , TNF-Related Apoptosis-Inducing Ligand/metabolism , Xenograft Model Antitumor Assays
15.
Histopathology ; 77(3): 402-412, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32473032

ABSTRACT

AIMS: Histology-based tumour microenvironment (TME) scores are useful in predicting the prognosis of gastrointestinal cancer. However, their prognostic roles in distal bile duct cancer (DBDC) have not been previously studied. This study aimed to evaluate the prognostic significance of the TME scores using the Klintrup-Mäkinen (KM) grade, tumour stroma percentage (TSP) and the Glasgow microenvironment score (GMS) in resected DBDC. METHODS AND RESULTS: Eighty-one patients with DBDC who underwent curative resection were enrolled. DBDC was graded according to KM grade, TSP and GMS. A high KM grade was found in 19 patients (24%) and a high TSP was found in 47 patients (58%). A high TSP was significantly correlated with a low KM grade (P < 0.001). The distribution of the GMS, which was developed by combining the KM grade and TSP, was as follows: 0 (n = 19, 24%), 1 (n = 19, 24%) and 2 (n = 43, 52%). A low KM grade, high TSP and high GMS were significantly associated with short overall survival (OS) (P < 0.001) and relapse-free survival (RFS) (P < 0.001). Furthermore, multivariate analysis showed that a low KM grade [hazard ratio (HR) = 3.826; confidence interval (CI) = 1.650-8.869; P = 0.014], high TSP (HR = 2.193; CI = 1.173-4.100, P = 0.002) and high GMS (HR = 7.148; CI = 2.811-18.173) were independent prognostic factors for short RFS; a low KM grade (HR = 4.324; CI = 1.594-11.733) and high GMS (HR = 6.332; CI = 2.743-14.594) were independent prognostic factors for short OS. CONCLUSION: Histology-based TME scores, including the KM grade, TSP and GMS, are useful for predicting the survival of patients with resected DBDC.


Subject(s)
Adenocarcinoma/pathology , Bile Duct Neoplasms/pathology , Neoplasm Grading/methods , Tumor Microenvironment , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Prognosis
16.
Anticancer Res ; 39(12): 6635-6643, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31810928

ABSTRACT

BACKGROUND/AIM: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) triggers apoptosis of cancer cells and, when used in combination with other anticancer drugs, is regarded as an effective strategy for anticancer treatment. In this study, we investigated the efficacy of combination treatment with TRAIL-secreting human mesenchymal stem cells (MSC-TRAIL) and compound C, an AMP-activated protein kinase (AMPK inhibitor), on glioblastoma. MATERIALS AND METHODS: The anticancer effect using MSC-TRAIL and compound C on glioma was evaluated in vitro and on in vivo models. RESULTS: Combination treatment of MSC-TRAIL and compound C increased apoptosis by enhancing expression of B-cell lymphoma 2 (BCL2)-associated X protein (BAX) and reducing that of anti-apoptotic proteins cellular FLICE-inhibitory protein (FLIP), X-linked inhibitor of apoptosis (XIAP), and BCL2 in glioma. In addition, MSC-TRAIL and compound C combination increased caspase-3 cleavage and apoptotic cells in a mouse glioma model compared with the group treated with the agents alone. CONCLUSION: Our results suggest that MSC-TRAIL and compound C are a novel combination for treatment of glioma.


Subject(s)
AMP-Activated Protein Kinases/antagonists & inhibitors , Brain Neoplasms/therapy , Glioblastoma/therapy , Mesenchymal Stem Cell Transplantation , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Animals , Apoptosis , Brain Neoplasms/metabolism , CASP8 and FADD-Like Apoptosis Regulating Protein/metabolism , Caspase 3/metabolism , Combined Modality Therapy , Glioblastoma/metabolism , Heterografts , Humans , Male , Mesenchymal Stem Cells/metabolism , Mice , Mice, Nude , Proto-Oncogene Proteins c-bcl-2/metabolism , TNF-Related Apoptosis-Inducing Ligand/metabolism , X-Linked Inhibitor of Apoptosis Protein/metabolism , bcl-2-Associated X Protein/metabolism
17.
Front Microbiol ; 9: 910, 2018.
Article in English | MEDLINE | ID: mdl-29867821

ABSTRACT

The products of microbial metabolism form an integral part of human industry and have been shaped by evolutionary processes, accidentally and deliberately, for thousands of years. In the production of wine, a great many flavor and aroma compounds are produced by yeast species and are the targets of research for commercial breeding programs. Here we demonstrate how co-evolution with multiple species can generate novel interactions through serial co-culture in grape juice. We find that after ~65 generations, co-evolved strains and strains evolved independently show significantly different growth aspects and exhibit significantly different metabolite profiles. We show significant impact of co-evolution of Candida glabrata and Pichia kudriavzevii on the production of metabolites that affect the flavor and aroma of experimental wines. While co-evolved strains do exhibit novel interactions that affect the reproductive success of interacting species, we found no evidence of cross-feeding behavior. Our findings yield promising avenues for developing commercial yeast strains by using co-evolution to diversify the metabolic output of target species without relying on genetic modification or breeding technologies. Such approaches open up exciting new possibilities for harnessing microbial co-evolution in areas of agriculture and food related research generally.

18.
J Biol Chem ; 293(12): 4262-4276, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29382728

ABSTRACT

p53 is an important tumor-suppressor protein that is mutated in more than 50% of cancers. Strategies for restoring normal p53 function are complicated by the oncogenic properties of mutant p53 and have not met with clinical success. To counteract mutant p53 activity, a variety of drugs with the potential to reconvert mutant p53 to an active wildtype form have been developed. However, these drugs are associated with various negative effects such as cellular toxicity, nonspecific binding to other proteins, and inability to induce a wildtype p53 response in cancer tissue. Here, we report on the effects of a curcumin analog, HO-3867, on p53 activity in cancer cells from different origins. We found that HO-3867 covalently binds to mutant p53, initiates a wildtype p53-like anticancer genetic response, is exclusively cytotoxic toward cancer cells, and exhibits high anticancer efficacy in tumor models. In conclusion, HO-3867 is a p53 mutant-reactivating drug with high clinical anticancer potential.


Subject(s)
Apoptosis/drug effects , Curcumin/analogs & derivatives , Mutant Proteins/genetics , Mutation , Neoplasms/pathology , Piperidones/pharmacology , Tumor Suppressor Protein p53/genetics , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Curcumin/pharmacology , Female , Humans , Mice , Mice, Nude , Mutant Proteins/metabolism , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Cells, Cultured , Tumor Suppressor Protein p53/metabolism , Xenograft Model Antitumor Assays
19.
J Neuroimmunol ; 314: 81-88, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29224961

ABSTRACT

Methylprednisolone (MP) has been recommended as a standard drug in MS therapies. We previously demonstrated that IFNß-secreting human bone marrow-derived mesenchymal stem cells (MSCs-IFNß) exert immunomodulatory effects in experimental autoimmune encephalomyelitic (EAE) mice. In this study, we evaluated whether a combined treatment of MP and MSCs-IFNß had enhanced therapeutic effects on EAE mice. The combination treatment resulted in enhanced immunomodulatory effects, including reduced production of pro-inflammatory cytokines and increased production of anti-inflammatory cytokines. Thus, our results provide a framework for designing novel experimental protocols to enhance the therapeutic effects of existing MS treatments.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Encephalomyelitis, Autoimmune, Experimental/immunology , Interferon-beta/metabolism , Mesenchymal Stem Cell Transplantation/methods , Methylprednisolone/pharmacology , Animals , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Genetic Therapy/methods , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Spinal Cord/drug effects , Spinal Cord/immunology , Spinal Cord/pathology
20.
Thorac Cancer ; 8(3): 278-282, 2017 05.
Article in English | MEDLINE | ID: mdl-28371214

ABSTRACT

Tracheal sarcomatoid carcinoma is an extremely infrequent neoplasm with unclear pathogenesis and clinical outcomes. To date, only two cases have been described in English literature. We report a case of a 37-year-old patient complaining of hemoptysis, dyspnea, and cough. An intraluminal polypoid mass in the trachea was found and ultimately diagnosed as tracheal sarcomatoid carcinoma in the cervical trachea with both carcinomatous and sarcomatoid morphology. The patient is alive without recurrence after segmental resection of the trachea. We also present a comparative analysis of our case with a prior tracheal sarcomatoid carcinoma case.


Subject(s)
Sarcoma/surgery , Trachea/surgery , Tracheal Neoplasms/surgery , Adult , Humans , Male , Neoplasm Recurrence, Local/pathology , Sarcoma/diagnosis , Sarcoma/pathology , Trachea/pathology , Tracheal Neoplasms/diagnosis , Tracheal Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL