Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(24): 6451-6457, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38869084

ABSTRACT

In the recent era of green and sustainable energy, the demand for effective and efficient energy harvesting has dramatically increased. Piezoelectric energy harvesting, which converts mechanical energy into electrical energy, is considered a viable strategy to achieve this goal. Janus-type nanomaterial, a noncentrosymmetric material with different elemental species in the upper and lower atomic layers, has gained interest due to its exotic properties compared to conventional bulk and symmetric materials. In this work, we systematically design and investigate a new class of Janus nanomaterials with enhanced intrinsic polarization via the successive ionic exchange method. Multiple layers of stability standards, including both thermodynamic and dynamic stabilities, are employed in the high-throughput screening procedure of novel Janus-type nanomaterials. The newly proposed Janus-type nanomaterials exhibit more than 10 times higher piezoelectric response compared to that of reported low-dimensional materials and even comparable to that of bulk materials.

2.
Adv Sci (Weinh) ; 11(24): e2309819, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582505

ABSTRACT

Exsolution is an effective method for synthesizing robust nanostructured metal-based functional materials. However, no studies have investigated the exsolution of metal nanoparticles into metal nitride substrates. In this study, a versatile nitridation-driven exsolution method is developed for embedding catalytically active metal nanoparticles in conductive metal nitride substrates via the ammonolysis of multimetallic oxides. Using this approach, Ti1-xRuxO2 nanowires are phase-transformed into holey TiN nanotubes embedded with exsolved Ru nanoparticles. These Ru-exsolved holey TiN nanotubes exhibit outstanding electrocatalytic activity for the hydrogen evolution reaction with excellent durability, which is significantly higher than that of Ru-deposited TiN nanotubes. The enhanced stability of the Ru-exsolved TiN nanotubes can be attributed to the Ru nanoparticles embedded in the robust metal nitride matrix and the formation of interfacial Ti3+─N─Ru4+ bonds. Density functional theory calculations reveal that the exsolved Ru nanoparticles have a lower d-band center position and optimized hydrogen affinity than deposited Ru nanoparticles, indicating the superior electrocatalyst performance of the former. In situ Raman spectroscopic analysis reveals that the electron transfer from TiN to Ru nanoparticles is enhanced during the electrocatalytic process. The proposed approach opens a new avenue for stabilizing diverse metal nanostructures in many conductive matrices like metal phosphides and chalcogenides.

3.
ACS Nano ; 18(5): 4559-4569, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38264984

ABSTRACT

The oxidation of copper and its surface oxides are gaining increasing attention due to the enhanced CO2 reduction reaction (CO2RR) activity exhibited by partially oxidized copper among the copper-based catalysts. The "8" surface oxide on Cu(111) is seen as a promising structure for further study due to its resemblance to the highly active Cu2O(110) surface in the C-C coupling of the CO2RR, setting it apart from other O/Cu(111) surface oxides resembling Cu2O(111). However, recent X-ray photoelectron spectroscopy analysis challenges the currently accepted atomic structure of the "8" surface oxide, prompting a need for reevaluation. This study highlights the limitations of conventional methods when addressing such challenges, leading us to adopt global optimization search techniques. After a rigorous process to ensure robustness, the unbiased global minimum of the "8" surface oxide is identified. Interestingly, this configuration differs significantly from other surface oxides and also from previous "8" models while retaining similarities to the Cu2O(110) surface.

4.
J Am Chem Soc ; 145(41): 22620-22632, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37799086

ABSTRACT

Nanostructured silicon with an equilibrium shape has exhibited hydrogen evolution reaction activity mainly owing to its high surface area, which is distinct from that of bulk silicon. Such a Wulff shape of silicon favors low-surface-energy planes, resulting in silicon being an anisotropic and predictably faceted solid in which certain planes are favored, but this limits further improvement of the catalytic activity. Here, we introduce nanoporous silicon nanosheets that possess high-surface-energy crystal planes, leading to an unconventional Wulff shape that bolsters the catalytic activity. The high-index plane, uncommonly seen in the Wulff shape of bulk Si, has a band structure optimally aligned with the redox potential necessary for hydrogen generation, resulting in an apparent quantum yield (AQY) of 12.1% at a 400 nm wavelength. The enhanced light absorption in nanoporous silicon nanosheets also contributes to the high photocatalytic activity. Collectively, the strategy of making crystals with nontypical Wulff shapes can provide a route toward various classes of photocatalysts for hydrogen production.

5.
Nanoscale Adv ; 5(20): 5513-5519, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37822900

ABSTRACT

Understanding the characteristics of intrinsic defects in crystals is of great interest in many fields, from fundamental physics to applied materials science. Combined investigations of scanning tunneling microscopy/spectroscopy (STM/S) and density functional theory (DFT) are conducted to understand the nature of Se vacancy defects in monolayer (ML) ReSe2 grown on a graphene substrate. Among four possible Se vacancy sites, we identify the Se4 vacancy close to the Re layer by registry between STM topography and DFT simulated images. The Se4 vacancy is also thermodynamically favored in formation energy calculations, supporting its common observation via STM. dI/dV spectroscopy shows that the Se4 vacancy has a defect state at around -1.0 V, near the valence band maximum (EVBM). DOS calculations done for all four Se vacancies indicate that only the Se4 vacancy presents such a defect state near EVBM, confirming experimental observations. Our work provides valuable insights into the behavior of ML ReSe2/graphene heterojunctions containing naturally occurring Se vacancies, which may have strong implications in electronic device applications.

6.
Nat Commun ; 14(1): 1981, 2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37031234

ABSTRACT

A variety of phase transitions have been found in two-dimensional layered materials, but some of their atomic-scale mechanisms are hard to clearly understand. Here, we report the discovery of a phase transition whose mechanism is identified as interlayer sliding in lead iodides, a layered material widely used to synthesize lead halide perovskites. The low-temperature crystal structure of lead iodides is found not 2H polytype as known before, but non-centrosymmetric 4H polytype. This undergoes the order-disorder phase transition characterized by the abrupt spectral broadening of valence bands, taken by angle-resolved photoemission, at the critical temperature of 120 K. It is accompanied by drastic changes in simultaneously taken photocurrent and photoluminescence. The transmission electron microscopy is used to reveal that lead iodide layers stacked in the form of 4H polytype at low temperatures irregularly slide over each other above 120 K, which can be explained by the low energy barrier of only 10.6 meV/atom estimated by first principles calculations. Our findings suggest that interlayer sliding is a key mechanism of the phase transitions in layered materials, which can significantly affect optoelectronic and optical characteristics.

7.
Nano Lett ; 22(18): 7636-7643, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36106948

ABSTRACT

Layered group IV monochalcogenides are two-dimensional (2D) semiconducting materials with unique crystal structures and novel physical properties. Here, we report the growth of single crystalline GeS microribbons using the chemical vapor transport process. By using conductive atomic force microscopy, we demonstrated that the conductive behavior in the vertical direction was mainly affected by the Schottky barriers between GeS and both electrodes. Furthermore, we found that the topographic and current heterogeneities were significantly different with and without illumination. The topographic deformation and current enhancement were also predicted by our density functional theory (DFT)-based calculations. Their local spatial correlation between the topographic height and current was established. By virtue of 2D fast Fourier transform power spectra, we constructed the holistic spatial correlation between the topographic and current heterogeneity that indicated the diminished correlation with illumination. These findings on layered GeS microribbons provide insights into the conductive and topographic behaviors in 2D materials.

8.
Nat Commun ; 13(1): 3171, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35676247

ABSTRACT

To date, the search for active, selective, and stable electrocatalysts for the oxygen evolution reaction (OER) has not ceased and a detailed atomic-level design of the OER catalyst remains an outstanding (if not, compelling) problem. Considerable studies on different surfaces and polymorphs of iridium oxides (with varying stoichiometries and dopants) have emerged over the years, showing much higher OER activity than the conventionally reported rutile-type IrO2. Here, we have considered different metastable nanoporous and amorphous iridium oxides of different chemical stoichiometries. Using first-principles electronic structure calculations, we investigate the (electro)chemical stability, intercalation properties, and electronic structure of these iridium oxides. Using an empirical regression model between the Ir-O bond characteristics and the measured OER overpotentials, we demonstrate how activated Ir-O bonds (and the presence of more electrophilic oxygens) in these less understood polymorphs of iridium oxides can explain their superior OER performance observed in experiments.

9.
Adv Sci (Weinh) ; 9(13): e2104569, 2022 May.
Article in English | MEDLINE | ID: mdl-35253401

ABSTRACT

To expand the unchartered materials space of lead-free ferroelectrics for smart digital technologies, tuning their compositional complexity via multicomponent alloying allows access to enhanced polar properties. The role of isovalent A-site in binary potassium niobate alloys, (K,A)NbO3 using first-principles calculations is investigated. Specifically, various alloy compositions of (K,A)NbO3 are considered and their mixing thermodynamics and associated polar properties are examined. To establish structure-property design rules for high-performance ferroelectrics, the sure independence screening sparsifying operator (SISSO) method is employed to extract key features to explain the A-site driven polarization in (K,A)NbO3 . Using a new metric of agreement via feature-assisted regression and classification, the SISSO model is further extended to predict A-site driven polarization in multicomponent systems as a function of alloy composition, reducing the prediction errors to less than 1%. With the machine learning model outlined in this work, a polarity-composition map is established to aid the development of new multicomponent lead-free polar oxides which can offer up to 25% boosting in A-site driven polarization and achieving more than 150% of the total polarization in pristine KNbO3 . This study offers a design-based rational route to develop lead-free multicomponent ferroelectric oxides for niche information technologies.

10.
Adv Sci (Weinh) ; 9(1): e2103368, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34713617

ABSTRACT

A defect engineering of inorganic solids garners great deal of research activities because of its high efficacy to optimize diverse energy-related functionalities of nanostructured materials. In this study, a novel in situ defect engineering route to maximize electrocatalytic redox activity of inorganic nanosheet is developed by using holey nanostructured substrate with strong interfacial electronic coupling. Density functional theory calculations and in situ spectroscopic analyses confirm that efficient interfacial charge transfer takes place between holey TiN and Ni-Fe-layered double hydroxide (LDH), leading to the feedback formation of nitrogen vacancies and a maximization of cation redox activity. The holey TiN-LDH nanohybrid is found to exhibit a superior functionality as an oxygen electrocatalyst and electrode for Li-O2 batteries compared to its non-holey homologues. The great impact of hybridization-driven vacancy introduction on the electrochemical performance originates from an efficient electrochemical activation of both Fe and Ni ions during electrocatalytic process, a reinforcement of interfacial electronic coupling, an increase in electrochemical active sites, and an improvement in electrocatalysis/charge-transfer kinetics.

11.
Nanoscale ; 13(37): 15721-15730, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34524344

ABSTRACT

Nanocrystals of group 5 tetradymites M2X3 (where M = Bi and Sb, X = Se and Te) are of high technological relevance in modern topological nanoelectronics. However, there is a current lack of a systematic understanding to predict the preferred nanocrystal morphology in experiments where commonly-used equilibrium thermodynamic models appear to fail. In this work, using first-principles DFT calculations with a rationally-extended ab initio atomistic thermodynamics approach coupled to implicit solvation models and Gibbs-Wulff shape constructions, we demonstrate that this absence of predictive power stems from the limitation of equilibrium thermodynamics. By re-tracing and carefully addressing with a more realistic chemical potential definition, we illustrate this shortcoming can be overcome and afford a more rational route to size-engineer and shape-design highly-functional group 5 tetradymite nanoparticles for targeted applications.

12.
Adv Mater ; 33(15): e2007345, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33751679

ABSTRACT

Stochastic inhomogeneous oxidation is an inherent characteristic of copper (Cu), often hindering color tuning and bandgap engineering of oxides. Coherent control of the interface between metal and metal oxide remains unresolved. Coherent propagation of an oxidation front in single-crystal Cu thin film is demonstrated to achieve a full-color spectrum for Cu by precisely controlling its oxide-layer thickness. Grain-boundary-free and atomically flat films prepared by atomic-sputtering epitaxy allow tailoring of the oxide layer with an abrupt interface via heat treatment with a suppressed temperature gradient. Color tuning of nearly full-color red/green/blue indices is realized by precise control of the oxide-layer thickness; the samples cover ≈50.4% of the standard red/green/blue color space. The color of copper/copper oxide is realized by the reconstruction of the quantitative yield color from the oxide "pigment" (complex dielectric functions of Cu2 O) and light-layer interference (reflectance spectra obtained from the Fresnel equations) to produce structural color. Furthermore, laser-oxide lithography is demonstrated with micrometer-scale linewidth and depth through local phase transformation to oxides embedded in the metal, providing spacing necessary for semiconducting transport and optoelectronics functionality.

13.
J Chem Phys ; 154(6): 064703, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33588548

ABSTRACT

Refractory transition metal nitrides exhibit a plethora of polymorphic expressions and chemical stoichiometries. To afford a better understanding of how defects may play a role in the structural and thermodynamics of these nitrides, using density-functional theory calculations, we investigate the influence of point and pair defects in bulk metastable γ-MoN and its (001) surface. We report favorable formation of Schottky defect pairs of neighboring Mo and N vacancies in bulk γ-MoN and apply this as a defect-mediated energy correction term to the surface energy of γ-MoN(001) within the ab initio atomistic thermodynamics approach. We also inspect the structural distortions in both bulk and surfaces of γ-MoN by using the partial radial distribution function, g(r), of Mo-N bond lengths. Large atomic displacements are found in both cases, leading to a broad spread of Mo-N bond length values when compared to their idealized bulk values. We propose that these structural and thermodynamic analyses may provide some insight into a better understanding of metastable materials and their surfaces.

14.
Nat Mater ; 20(4): 533-540, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33398123

ABSTRACT

Conductive and stretchable electrodes that can be printed directly on a stretchable substrate have drawn extensive attention for wearable electronics and electronic skins. Printable inks that contain liquid metal are strong candidates for these applications, but the insulating oxide skin that forms around the liquid metal particles limits their conductivity. This study reveals that hydrogen doping introduced by ultrasonication in the presence of aliphatic polymers makes the oxide skin highly conductive and deformable. X-ray photoelectron spectroscopy and atom probe tomography confirmed the hydrogen doping, and first-principles calculations were used to rationalize the obtained conductivity. The printed circuit lines show a metallic conductivity (25,000 S cm-1), excellent electromechanical decoupling at a 500% uniaxial stretching, mechanical resistance to scratches and long-term stability in wide ranges of temperature and humidity. The self-passivation of the printed lines allows the direct printing of three-dimensional circuit lines and double-layer planar coils that are used as stretchable inductive strain sensors.

15.
ACS Appl Mater Interfaces ; 11(44): 41516-41522, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31612706

ABSTRACT

Strain engineering has been extensively explored for tailoring the material properties and, in turn, improving the device performance of semiconducting thin films. In particular, the effects of strain on the optical properties of these films have attracted considerable research interest, but experimental demonstrations in flexible systems have rarely been reported. Here, we exploited the variable optical properties of flexible ZnS thin films by imposing a controllable external compressive stress during a stretching-driven deposition process. This stress induced crystal anisotropy with an increase in tetragonality, which differs from that of the unstrained cubic ZnS thin films. The refractive index of the films was estimated by means of an envelope method using interference fringes. As a result, the reductions in the refractive index and optical band gap were observed by applying the stretching-driven strains with the resultant compressive stress. The modulated refractive index and its dispersion behavior were further investigated by employing a single-oscillator model to drive subsequent correlative parameters such as dispersion energy, oscillating strength, and high-frequency permittivity. As a proof of concept, an optical lens of ZnS was designed to confirm the effect of in situ stress-mediated optical modulation by detecting the variable focal length with stress.

16.
Nanoscale ; 11(42): 20096-20101, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31612892

ABSTRACT

Polymorphisms allowing multiple structural phases are among the most fascinating properties of transition metal dichalcogenides (TMDs). Herein, the polymorphic 1T' phase and its lattice dynamics for bilayer VSe2 grown on epitaxial bilayer graphene are investigated via low temperature scanning tunneling microscopy (STM). The 1T' structure, mostly observed in group-6 TMDs, is unexpected in VSe2, which is a group-5 TMD. Emergence of the 1T' structure in bilayer VSe2 suggests the important roles of interface and layer configurations, providing new possibilities regarding the polymorphism of TMDs. Detailed topographical analysis elucidates the microscopic nature of the 1T' structure, confirming that Se-like and V-like surfaces can be resolved depending on the polarity of the sample bias. In addition, bilayer VSe2 can transit from a static state of the 1T' phase to a dynamic state consisting of lattice vibrations, triggered by tunneling current from the STM tip. Topography also shows hysteretic behavior during the static-dynamic transition, which is attributed to latent energy existing between the two states. The observed lattice dynamics involve vibrational motion of the Se atoms and the middle V atoms. Our observations will provide important information to establish in-depth understanding of the microscopic nature of 1T' structures and the polymorphism of two-dimensional TMDs.

17.
Phys Chem Chem Phys ; 21(47): 25952-25961, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31584585

ABSTRACT

The atomic order, electronic structure and thermodynamic stability of nickel aluminate, NiAl2O4, have been analyzed using periodic density functional theory and cluster expansion. NiAl2O4 forms a tetragonal structure with P4122 space group. At temperatures below 800 K, it is an inverse spinel, with Ni occupying the octahedral sites and Al occupying both the octahedral and the tetrahedral sites. Some Niocta + Altetra ⇌ Nitetra + Alocta exchange occurs above 800 K, but the structure remains largely inverse at high temperatures, with about 95% Niocta at 1500 K. Various functionals, with and without van der Waals corrections, were used to predict the experimental formation energy, lattice parameters and electronic structure. In all cases, the NiAl2O4 is found to be ferromagnetic and a semiconductor with an indirect band gap along the Γ â†’ M symmetry points. NiAl2O4 is found to be thermodynamically stable at operating conditions of 900-1000 K and 1 atm relative to its competing oxide phases, NiO and Al2O3.

18.
Nanoscale ; 11(13): 6023-6035, 2019 Mar 28.
Article in English | MEDLINE | ID: mdl-30869099

ABSTRACT

Ultrathin oxidic layers of Mo (i.e. O/Mo) on the Au(111) substrate are investigated using first-principles density-functional theory calculations. Various polymorphic structural models of these O/Mo layers are proposed and compared with previous experimental results - covering both spectroscopic and microscopic approaches of characterization. We find that, through the control of metal-oxygen coordination in these ultrathin oxidic O/Mo films on Au(111), the oxidation state of Mo atoms in the O/Mo layers can be modulated and reduced without intentional creation of oxygen vacancies. This is also assisted by a charge transfer mechanism from the Au substrate to these oxidic films, providing a direct means to tune the surface electronic properties of ultrathinoxide films on metal substrates.

19.
ACS Appl Mater Interfaces ; 11(3): 2917-2924, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30580514

ABSTRACT

Wetting of the liquid metal on the solid electrolyte of a liquid metal battery controls the operating temperature and performance of the battery. Liquid sodium electrodes are particularly attractive because of their low cost, natural abundance, and geological distribution. However, they wet poorly on a solid electrolyte near its melting temperature, limiting their widespread suitability for low-temperature batteries to be used for large-scale energy storage systems. Herein, we develop an isolated metal-island strategy that can improve sodium wetting in sodium-beta alumina batteries that allows operation at lower temperatures. Our results suggest that in situ heat treatment of a solid electrolyte followed by bismuth deposition effectively eliminates oxygen and moisture from the surface of the solid electrolyte, preventing the formation of an oxide layer on the liquid sodium, leading to enhanced wetting. We also show that employing isolated bismuth islands significantly improves cell performance, with cells retaining 94% of their charge after the initial cycle, an improvement over cells without bismuth islands. These results suggest that coating isolated metal islands is a promising and straightforward strategy for the development of low-temperature sodium-ß alumina batteries.

20.
J Phys Chem Lett ; 9(20): 5934-5939, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30247923

ABSTRACT

Experimental verification of optical modulation with external stress has not been easily available in flexible systems. Here, we intentionally induced extra stress in wide band gap ZnO thin films by a unique prestress-driven deposition processing that utilizes a stretching mode. The stretching mode provides homogeneous but biaxial stresses in the hexagonal wurtzite structure, leading to the extension of the c-axis and the contraction of the a-axis. As a result, the reduction of the optical band gap by ∼150 meV was observed for the strain of ∼4.87%. The band gap narrowing was found to occur from the respective downward and upward shifts of the conduction band minimum and valence band maximum under the applied stress. The experimental evidence of optical modulations was supported by the theoretical calculations using density functional theory. The reduced strong interactions between Zn d and O p orbitals were assumed to be responsible for the band gap narrowing.

SELECTION OF CITATIONS
SEARCH DETAIL
...