Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 8: 124, 2022.
Article in English | MEDLINE | ID: mdl-36457715

ABSTRACT

Bulk acoustic wave (BAW) filters have been extensively used in consumer products for mobile communication systems due to their high performance and standard complementary metal-oxide-semiconductor (CMOS) compatible integration process. However, it is challenging for a traditional aluminum nitride (AlN)-based BAW filter to meet several allocated 5G bands with more than a 5% fractional bandwidth via an acoustic-only approach. In this work, we propose an Al0.8Sc0.2N-based film bulk acoustic wave resonator (FBAR) for the design of radio frequency (RF) filters. By taking advantage of a high-quality Al0.8Sc0.2N thin film, the fabricated resonators demonstrate a large K eff 2 of 14.5% and an excellent figure of merit (FOM) up to 62. The temperature coefficient of frequency (TCF) of the proposed resonator is measured to be -19.2 ppm/°C, indicating excellent temperature stability. The fabricated filter has a center frequency of 4.24 GHz, a -3 dB bandwidth of 215 MHz, a small insertion loss (IL) of 1.881 dB, and a rejection >32 dB. This work paves the way for the realization of wideband acoustic filters operating in the 5G band.

2.
Micromachines (Basel) ; 13(12)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36557343

ABSTRACT

Film bulk acoustic resonators (FBARs) with a desired effective electromechanical coupling coefficient (Keff2) are essential for designing filter devices. Using AlN/AlScN composite film with the adjustable thickness ratio can be a feasible approach to obtain the required Keff2. In this work, we research the resonant characteristics of FBARs based on AlN/AlScN composite films with different thickness ratios by finite element method and fabricate FBAR devices in a micro-electromechanical systems process. Benefiting from the large piezoelectric constants, with a 1 µm-thick Al0.8Sc0.2N film, Keff2 can be twice compared with that of FBAR based on pure AlN films. For the composite films with different thickness ratios, Keff2 can be adjusted in a relatively wide range. In this case, a filter with the specific N77 sub-band is demonstrated using AlN/Al0.8Sc0.2N composite film, which verifies the enormous potential for AlN/AlScN composite film in design filters.

3.
Nanotechnology ; 21(40): 405505, 2010 Oct 08.
Article in English | MEDLINE | ID: mdl-20829571

ABSTRACT

Here we show how the electromechanical properties of silicon nanowires (NWs) are modified when they are subjected to extreme mechanical deformations (buckling and buckling mode transitions), such as those appearing in flexible devices. Flexible devices are prone to frequent dynamic stress variations, especially buckling, while the small size of NWs could give them an advantage as ultra-sensitive electromechanical stress sensors embedded in such devices. We evaluated the NWs post-buckling behavior and the effects of buckling mode transition on their piezoresistive gauge factor (GF). Polycrystalline silicon NWs were embedded in SiO(2) microbridges to facilitate concurrent monitoring of their electrical resistance without problematic interference, while an external stylus performed controlled deformations of the microbridges. At points of instability, the abrupt change in the buckling configuration of the microbridge corresponded to a sharp resistance change in the embedded NWs, without altering the NWs' GF. These results also highlight the importance of strategically positioning the NW in the devices, since electrical monitoring of buckling mode transitions is feasible when the deformations impact a region where the NW is placed. The highly flexible NWs also exhibited unusually large fracture strength, sustaining tensile strains up to 5.6%; this will prove valuable in demanding flexible sensors.


Subject(s)
Electricity , Mechanical Phenomena , Nanowires/chemistry , Silicon/chemistry , Stress, Mechanical , Nanowires/ultrastructure , Surface Properties
4.
Lab Chip ; 10(20): 2818-21, 2010 Oct 21.
Article in English | MEDLINE | ID: mdl-20824255

ABSTRACT

This report introduces a bleaching-independent temperature measurement method based on the analysis of the fluorescence emitted during the melting of DNA molecules with the SYBR-Green I intercalator, in a microvolume where the strong non-linearity of the signal is used to eliminate the photobleaching effect as well as to determine the heat transfer rate between a heater and the sample and the temperature non-uniformity within the sample.


Subject(s)
DNA/chemistry , Microfluidic Analytical Techniques/instrumentation , Microscopy, Fluorescence/instrumentation , Oligonucleotide Array Sequence Analysis/instrumentation , Thermometers , Equipment Design , Equipment Failure Analysis , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...