Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Rev ; 2(3): 121-135, 2010 Aug.
Article in English | MEDLINE | ID: mdl-28510069

ABSTRACT

To genuinely understand how complex biological structures function, we must integrate knowledge of their dynamic behavior and of their molecular machinery. The combined use of light or laser microscopy and electron microscopy has become increasingly important to our understanding of the structure and function of cells and tissues at the molecular level. Such a combination of two or more different microscopy techniques, preferably with different spatial- and temporal-resolution limits, is often referred to as 'correlative microscopy'. Correlative imaging allows researchers to gain additional novel structure-function information, and such information provides a greater degree of confidence about the structures of interest because observations from one method can be compared to those from the other method(s). This is the strength of correlative (or 'combined') microscopy, especially when it is combined with combinatorial or non-combinatorial labeling approaches. In this topical review, we provide a brief historical perspective of correlative microscopy and an in-depth overview of correlative sample-preparation and imaging methods presently available, including future perspectives on the trend towards integrative microscopy and microanalysis.

2.
Biophys J ; 95(3): 1523-30, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18645198

ABSTRACT

The extracellular availability of growth factors, hormones, chemokines, and neurotransmitters under gradient conditions is required for directional cellular responses such as migration, axonal pathfinding, and tissue patterning. These responses are, in turn, important in disease and developmental processes. This article addresses critical barriers toward devising a chemotaxis assay that is broadly applicable for different kinds of cancer cells through the design of a microfluidic chamber that produces a steep gradient of chemoattractant. Photolithography was used to create microchannels for chemoattractant delivery, flow diversion barriers/conduits, and small outlets in the form of apertures. The 1-microm apertures were made at the active surface by uncapping a thin (1.5 microm) layer of AZ1518. This process also created a vertical conduit that diverted the flow such that it occurred perpendicularly to the active, experimental surface where the gradients were measured. The other side of the vertical conduit opened to underlying 20-microm deep channels that carried microfluidic flows of tracer dyes/growth factors. Modeled data using computational fluid dynamics produced gradients that were steep along the horizontal, active surface. This simulation mirrors empirically derived gradients obtained from the flow analyses of fluorescent compounds. The open chamber contains a large buffer volume, which prevents chemoattractant saturation and permits easy cell and compound manipulation. The technique obviates the use of membranes or laminar flow that may hinder imaging, rinsing steps, cell seeding, and treatment. The utility of the chamber in the study of cell protrusion, an early step during chemotaxis, was demonstrated by growing cancer cells in the chamber, inducing a chemoattractant gradient using compressed air at 0.7 bar, and performing time-lapse microscopy. Breast cancer cells responded to the rapidly developed and stable gradient of epidermal growth factor by directing centroid positions toward the gradient and by forming a leading edge at a speed of 0.45 microm/min.


Subject(s)
Cell Culture Techniques/instrumentation , Cell Physiological Phenomena/drug effects , Chemotactic Factors/administration & dosage , Chemotactic Factors/chemistry , Flow Injection Analysis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Cell Culture Techniques/methods , Equipment Design , Equipment Failure Analysis , Flow Injection Analysis/methods , Microfluidic Analytical Techniques/methods
3.
Cancer Res ; 68(12): 4525-30, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18559496

ABSTRACT

The transcriptional repressor Snail2 is overexpressed in head and neck squamous cell carcinomas (HNSCC) relative to nonmalignant head and neck mucosal epithelium, and in locally recurrent relative to nonrecurrent HNSCCs. We investigated the mechanisms by which Snails might contribute to the pathogenesis of HNSCCs using cell biological and molecular analyses. Oral keratinocytes that expressed Snails acquired an enhanced ability to attract monocytes and to invade a dense interstitial collagen matrix. They were also found to up-regulate production of proinflammatory cytokines and cyclooxygenase-2 (COX2), which have previously been shown to correlate with malignancy. Induction of nuclear factor-kappaB transcriptional activity by Snails was weak and not sufficient to account for the elevated levels of COX2, interleukin (IL)-6, IL8, or CXCL1. In addition, expression of Snails in oral keratinocytes impaired desquamation in vitro and strongly repressed expression of both ELF3 and matriptase-1, which play important roles in the terminal differentiation of keratinocytes. Reexpression of matriptase-1 in Snail-expressing cells partially rescued desquamation. This implicates Snails as contributing to malignancy both at the early stages, by impeding terminal differentiation, and at later stages, when invasion and inflammation are important.


Subject(s)
Cell Differentiation , Chemokine CXCL1/metabolism , Cyclooxygenase 2/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Keratinocytes/metabolism , Mouth Mucosa/metabolism , Transcription Factors/physiology , Animals , Cadherins/genetics , Cell Line , Cell Movement , DNA-Binding Proteins/metabolism , Dogs , Enzyme-Linked Immunosorbent Assay , Humans , Keratinocytes/cytology , Kidney/cytology , Kidney/metabolism , Luciferases/metabolism , Mouth Mucosa/cytology , NF-kappa B/genetics , NF-kappa B/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-ets , Serine Endopeptidases/metabolism , Snail Family Transcription Factors , Transcription Factors/metabolism , Transcription, Genetic , Transfection , Up-Regulation
4.
IUBMB Life ; 59(2): 60-7, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17454296

ABSTRACT

The study of cancer cell chemotaxis on two-dimensional surfaces in vitro has relevance to the diverse migratory behaviours exhibited in vivo that involve a directed path. These may include translocation along collagen fibres, invasion into the basement membrane and across stroma, intravasation and extravasation to arrive at a secondary destination designated for cancer cell colonization. Chemotaxis invariably denotes the ability of cells to sense gradients, polarize, adhere and deadhere to substrate, and translocate in the right direction. Amongst these, the sensing function is perhaps the unifying aspect of different migration styles, permitting the cells to resolve its orientation and path. This review examines the decision-making processes that take place during chemotaxis and illustrates that a universal mechanism is involved. In various cell types from Dictyostelium to neutrophils, there are some unifying principles that dictate sensing and how the putative leading edge and trailing end of cells are determined. Some of these principles have recently been applied in the study of cancer cell chemotaxis albeit different pathways are substituted. In amoeboid-like cancer cells, local excitation of the EGFR/PLCgamma/cofilin pathway and parallel, global inhibition of cofilin by LIMK occur to promote the asymmetric distribution and amplification of these internal signals in response to an external EGF gradient.


Subject(s)
Chemotaxis/physiology , Neoplasms/pathology , Animals , Cell Movement/physiology , Dictyostelium/physiology , ErbB Receptors/physiology , Neutrophils/physiology , Phosphatidylinositol 3-Kinases/physiology , Phospholipase C gamma/physiology , Receptors, Cell Surface/physiology , Signal Transduction
5.
BMC Cancer ; 6: 151, 2006 Jun 07.
Article in English | MEDLINE | ID: mdl-16756685

ABSTRACT

BACKGROUND: Non-small cell lung cancer is the most common cause of early casualty from malignant disease in western countries. The heterogeneous nature of these cells has been identified by histochemical and microarray biomarker analyses. Unfortunately, the morphological, molecular and biological variation within cell lines used as models for invasion and metastasis are not well understood. In this study, we test the hypothesis that heterogeneous cancer cells exhibit variable motility responses such as chemokinesis and chemotaxis that can be characterized molecularly. METHODS: A subpopulation of H460 lung cancer cells called KINE that migrated under chemokinetic (no gradient) conditions was harvested from Boyden chambers and cultured. Time-lapsed microscopy, immunofluorescence microscopy and microarray analyses were then carried out comparing chemokinetic KINE cells with the unselected CON cell population. RESULTS: Time-lapsed microscopy and analysis showed that KINE cells moved faster but less directionally than the unselected control population (CON), confirming their chemokinetic character. Of note was that chemokinetic KINE cells also chemotaxed efficiently. KINE cells were less adhesive to substrate than CON cells and demonstrated loss of mature focal adhesions at the leading edge and the presence of non-focalized cortical actin. These characteristics are common in highly motile amoeboid cells that may favour faster motility speeds. KINE cells were also significantly more invasive compared to CON. Gene array studies and real-time PCR showed the downregulation of a gene called, ROM, in highly chemokinetic KINE compared to mainly chemotactic CON cells. ROM was also reduced in expression in a panel of lung cancer cell lines compared to normal lung cells. CONCLUSION: This study shows that cancer cells that are efficient in both chemokinesis and chemotaxis demonstrate high invasion levels. These cells possess different morphological, cytoskeletal and adhesive properties from another population that are only efficient at chemotaxis, indicating a loss in polarity. Understanding the regulation of polarity in the context of cell motility is important in order to improve control and inhibition of invasion and metastasis.


Subject(s)
Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/metabolism , Gene Expression Regulation, Neoplastic , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Chemotaxis , Genes, Neoplasm , Humans , Kinetics , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis
7.
J Biol Chem ; 278(13): 11465-70, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12529380

ABSTRACT

Wnt-induced-secreted-protein-1 (WISP-1) is a cysteine-rich, secreted factor belonging to the CCN family. These proteins have been implicated in the inhibition of metastasis; however, the mechanisms involved have not been described. We demonstrated that overexpression of WISP-1 in H460 lung cancer cells inhibited lung metastasis and in vitro cell invasion and motility. We investigated the possibility that WISP-1 may regulate activation of Rac, a small GTPase important for cytoskeletal reorganizations during motility. In an indirect assay, WISP-1-expressing cells exhibited marked reduction in Rac activation compared with control cells. Blocking antibodies to alpha(v)beta(5) and alpha(1) integrins restored Rac activation in WISP-1 cells, suggesting that the inhibitory effect of WISP-1 on Rac lies downstream of integrins. Constitutively activated Rac mutant (RacG12V) was transfected into WISP-1 cells to restore Rac activation and these WISP-1/RacG12V transfectants were used for further studies. We performed microarray and real-time PCR analyses to identify genes involved in invasion that may be differentially regulated by WISP-1. Here, we showed decreased expression of metalloproteinase-1 (MMP-1) in WISP-1 cells compared with controls but increased expression in WISP-1/RacG12V cells. In an invasion assay across collagen I, an MMP-1 target matrix, WISP-1 cells were significantly less invasive compared with controls, whereas WISP-1/RacG12V cells showed elevated invasion levels. This work illustrates a negatively regulated pathway by WISP-1 involving integrins and Rac in the down-regulation of invasion.


Subject(s)
Down-Regulation , Growth Substances/physiology , Lung Neoplasms/pathology , Oncogene Proteins/physiology , rac GTP-Binding Proteins/antagonists & inhibitors , CCN Intercellular Signaling Proteins , Cell Line , Growth Substances/genetics , Humans , Intracellular Signaling Peptides and Proteins , Neoplasm Invasiveness , Neoplasm Metastasis , Oncogene Proteins/genetics , Proto-Oncogene Proteins , rac GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...