Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 8: 4565, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28240289

ABSTRACT

Hepatocellular carcinoma (HCC) has one of the poorest survival rates among cancers. Using multi-regional sampling of nine resected HCC with different aetiologies, here we construct phylogenetic relationships of these sectors, showing diverse levels of genetic sharing, spanning early to late diversification. Unlike the variegated pattern found in colorectal cancers, a large proportion of HCC display a clear isolation-by-distance pattern where spatially closer sectors are genetically more similar. Two resected intra-hepatic metastases showed genetic divergence occurring before and after primary tumour diversification, respectively. Metastatic tumours had much higher variability than their primary tumours, suggesting that intra-hepatic metastasis is accompanied by rapid diversification at the distant location. The presence of co-existing mutations offers the possibility of drug repositioning for HCC treatment. Taken together, these insights into intra-tumour heterogeneity allow for a comprehensive understanding of the evolutionary trajectories of HCC and suggest novel avenues for personalized therapy.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Biopsy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , DNA Copy Number Variations/genetics , Genome, Human , Humans , Liver/pathology , Liver/virology , Liver Neoplasms/genetics , Liver Neoplasms/virology , Mutation/genetics , Neoplasm Metastasis , Phenotype , Phylogeny , Sequence Analysis, DNA , Virus Integration
2.
Genome Res ; 24(10): 1559-71, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25186909

ABSTRACT

Chromosomal structural variations play an important role in determining the transcriptional landscape of human breast cancers. To assess the nature of these structural variations, we analyzed eight breast tumor samples with a focus on regions of gene amplification using mate-pair sequencing of long-insert genomic DNA with matched transcriptome profiling. We found that tandem duplications appear to be early events in tumor evolution, especially in the genesis of amplicons. In a detailed reconstruction of events on chromosome 17, we found large unpaired inversions and deletions connect a tandemly duplicated ERBB2 with neighboring 17q21.3 amplicons while simultaneously deleting the intervening BRCA1 tumor suppressor locus. This series of events appeared to be unusually common when examined in larger genomic data sets of breast cancers albeit using approaches with lesser resolution. Using siRNAs in breast cancer cell lines, we showed that the 17q21.3 amplicon harbored a significant number of weak oncogenes that appeared consistently coamplified in primary tumors. Down-regulation of BRCA1 expression augmented the cell proliferation in ERBB2-transfected human normal mammary epithelial cells. Coamplification of other functionally tested oncogenic elements in other breast tumors examined, such as RIPK2 and MYC on chromosome 8, also parallel these findings. Our analyses suggest that structural variations efficiently orchestrate the gain and loss of cancer gene cassettes that engage many oncogenic pathways simultaneously and that such oncogenic cassettes are favored during the evolution of a cancer.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Chromosome Aberrations , Chromosomes, Human, Pair 17/genetics , Receptor, ErbB-2/genetics , Base Sequence , Cell Line, Tumor , Female , Gene Amplification , Gene Duplication , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , MCF-7 Cells , Molecular Sequence Data , Sequence Analysis, DNA
3.
Mol Syst Biol ; 9: 640, 2013.
Article in English | MEDLINE | ID: mdl-23340846

ABSTRACT

Advances in genome sequencing have progressed at a rapid pace, with increased throughput accompanied by plunging costs. But these advances go far beyond faster and cheaper. High-throughput sequencing technologies are now routinely being applied to a wide range of important topics in biology and medicine, often allowing researchers to address important biological questions that were not possible before. In this review, we discuss these innovative new approaches-including ever finer analyses of transcriptome dynamics, genome structure and genomic variation-and provide an overview of the new insights into complex biological systems catalyzed by these technologies. We also assess the impact of genotyping, genome sequencing and personal omics profiling on medical applications, including diagnosis and disease monitoring. Finally, we review recent developments in single-cell sequencing, and conclude with a discussion of possible future advances and obstacles for sequencing in biology and health.


Subject(s)
Biomedical Research/methods , Genome , High-Throughput Nucleotide Sequencing/methods , Epigenomics , Gene Expression Profiling , Genetic Variation , Histones/metabolism , Humans , Single-Cell Analysis
4.
EMBO Mol Med ; 3(8): 451-64, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21656687

ABSTRACT

Secretory factors that drive cancer progression are attractive immunotherapeutic targets. We used a whole-genome data-mining approach on multiple cohorts of breast tumours annotated for clinical outcomes to discover such factors. We identified Serine protease inhibitor Kazal-type 1 (SPINK1) to be associated with poor survival in estrogen receptor-positive (ER+) cases. Immunohistochemistry showed that SPINK1 was absent in normal breast, present in early and advanced tumours, and its expression correlated with poor survival in ER+ tumours. In ER- cases, the prognostic effect did not reach statistical significance. Forced expression and/or exposure to recombinant SPINK1 induced invasiveness without affecting cell proliferation. However, down-regulation of SPINK1 resulted in cell death. Further, SPINK1 overexpressing cells were resistant to drug-induced apoptosis due to reduced caspase-3 levels and high expression of Bcl2 and phospho-Bcl2 proteins. Intriguingly, these anti-apoptotic effects of SPINK1 were abrogated by mutations of its protease inhibition domain. Thus, SPINK1 affects multiple aggressive properties in breast cancer: survival, invasiveness and chemoresistance. Because SPINK1 effects are abrogated by neutralizing antibodies, we suggest that SPINK1 is a viable potential therapeutic target in breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/pathology , Carrier Proteins/genetics , Genetic Testing , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Apoptosis , Breast Neoplasms/mortality , Carrier Proteins/analysis , Carrier Proteins/antagonists & inhibitors , Female , Humans , Immunohistochemistry , Prognosis , Receptors, Estrogen/analysis , Survival Analysis , Trypsin Inhibitor, Kazal Pancreatic
SELECTION OF CITATIONS
SEARCH DETAIL
...