Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 41(12): 2696-9, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27304266

ABSTRACT

Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m-1 accelerating gradients is possible only with laser pulse durations shorter than ∼1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Using this technique, an electron accelerating gradient of 690±100 MV m-1 was measured-a record for dielectric laser accelerators.

2.
Opt Lett ; 39(16): 4747-50, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25121864

ABSTRACT

We report the fabrication and first demonstration of an electron beam position monitor for a dielectric microaccelerator. This device is fabricated on a fused silica substrate using standard optical lithography techniques and uses the radiated optical wavelength to measure the electron beam position with a resolution of 10 µm, or 7% of the electron beam spot size. This device also measures the electron beam spot size in one dimension.

3.
Opt Lett ; 37(5): 975-7, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22378457

ABSTRACT

We present a new concept for a beam position monitor with the unique ability to map particle beam position to a measurable wavelength. Coupled with an optical spectrograph, this beam position monitor is capable of subnanometer resolution. We describe one possible design, and through finite-element frequency-domain simulations, we show a resolution of 0.7 nm. Because of its high precision and ultracompact form factor, this device is ideal for future x-ray sources and laser-driven particle accelerators "on a chip."

SELECTION OF CITATIONS
SEARCH DETAIL
...