Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 6(43): 28779-28787, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34746571

ABSTRACT

The avoidance and mitigation of energy wastage have attracted increasing attention in the context of global warming and climate change. With advances in materials science, diverse multifunctional materials with high thermal conductivity have shown excellent energy-saving potential. In this study, a hybrid film exhibiting high thermal conductivity with excellent stretchability and washability was prepared. First, a simple surface modification of boron nitride (BN) was performed to realize a modified boron nitride (BNOH) filler. Next, an organic dispersant was synthesized to enhance the dispersion of BNOH and graphene nanoplatelets (GNPs) in the proposed composite. Subsequently, a simple procedure was used to combine the dispersed GNPs and BNOH fillers with thermoplastic polyurethane (TPU) to fabricate a hybrid structure. The hybrid films composed of BNOH-GNP/TPU with a dispersant exhibited a high thermal conductivity of 12.62 W m-1 K-1 at a low filler loading of 20 wt.%. This hybrid film afforded excellent stretchability and washability, as indicated by the very small thermal-conductivity reduction to only 12.23 W m-1 K-1 after 100 cycles of fatigue testing and to 12.01 W m-1 K-1 after 10 washing cycles. Furthermore, the cooling and hydrophobicity properties of the hybrid film were enhanced when compared with neat TPU. Overall, our approach demonstrates a simple and novel strategy to break the passive effect of traditional commercial cooling clothing by combining a high-thermal-conductivity film with an active cooling source to amplify the cooling effect and develop wearable cooled smart clothes with great commercial potential.

2.
J Colloid Interface Sci ; 599: 611-619, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33979744

ABSTRACT

Polymers having high filler loading levels are not able to meet the increasing requirements of thermal interface materials by themselves; therefore, fillers and structures with unique advantages have been developed. In this study, mechanical mixing was used to disperse graphene nanoplatelets (GNPs) and boron nitride (BN) fillers inside thermoplastic polyurethane (TPU)-based films, which were then compounded into a multilayered structure. The multilayered BN-GNP/TPU composite film created during this study exhibited a high thermal conductivity of 6.86 W m-1 K-1 at a low filler loading of 20 wt% BN with 20 wt% GNP, which was significantly higher (2844%) than that of the neat TPU film. The composite film also had good durability to flexural fatigue and laundering. This was exhibited by maintaining thermal conductivity values of 6.25 W m-1 K-1 after 5000 cycles of the flexural fatigue test, and 6.85 W m-1 K-1 after 10 cycles of laundering, respectively. Furthermore, enhanced thermal stability, cooling, and hydrophobic properties of the multilayered BN-GNP/TPU composite films were also observed with the resulting composite film. Overall, such a system provides a facile approach that is applicable for the fabrication of multifunctional materials as thermal interface materials within smart cooling garments.

3.
Polymers (Basel) ; 13(1)2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33401420

ABSTRACT

In this study, a thermal conductivity of 0.22 W·m-1·K-1 was obtained for pristine epoxy (EP), and the impact of a hybrid filler composed of two-dimensional (2D) flake-like boron nitride (BN) and zero-dimensional (0D) spherical micro-sized aluminum oxide (Al2O3) on the thermal conductivity of epoxy resin was investigated. With 80 wt.% hybrid Al2O3-BN filler contents, the thermal conductivity of the EP composite reached 1.72 W·m-1·K-1, increasing approximately 7.8-fold with respect to the pure epoxy matrix. Furthermore, different important properties for the application were analyzed, such as Fourier-transform infrared (FTIR) spectra, viscosity, morphology, coefficient of thermal expansion (CTE), glass transition temperature (Tg), decomposition temperature (Td), dielectric properties, and thermal infrared images. The obtained thermal performance is suitable for specific electronic applications such as flip-chip underfill packaging.

4.
Nanomaterials (Basel) ; 10(5)2020 May 25.
Article in English | MEDLINE | ID: mdl-32466225

ABSTRACT

This research has successfully synthesized highly flexible and conductive nanohybrid electrode films. Nanodispersion and stabilization of silver nanoparticles (AgNPs) were achieved via non-covalent adsorption and with an organic polymeric dispersant and inorganic carbon-based nanomaterials-nano-carbon black (CB), carbon nanotubes (CNT), and graphene oxide (GO). The new polymeric dispersant-polyisobutylene-b-poly(oxyethylene)-b-polyisobutylene (PIB-POE-PIB) triblock copolymer-could stabilize AgNPs. Simultaneously, this stabilization was conducted through the addition of mixed organic/inorganic dispersants based on zero- (0D), one- (1D), and two-dimensional (2D) nanomaterials, namely CB, CNT, and GO. Furthermore, the dispersion solution was evenly coated/mixed onto polymeric substrates, and the products were heated. As a result, highly conductive thin-film materials (with a surface electrical resistance of approximately 10-2 Ω/sq) were eventually acquired. The results indicated that 2D carbon-based nanomaterials (GO) could stabilize AgNPs more effectively during their reductNion and, hence, generate particles with the smallest sizes, as the COO- functional groups of GO are evenly distributed. The optimal AgNPs/PIB-POE-PIB/GO ratio was 20:20:1. Furthermore, the flexible electrode layers were successfully manufactured and applied in wearable electronic sensors to generate electrocardiograms (ECGs). ECGs were, thereafter, successfully obtained.

5.
Nanomaterials (Basel) ; 10(4)2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32295277

ABSTRACT

A hybrid material obtained by blending ß-chitosan (CS) with triethylenetetramine-functionalized graphene oxide (TFGO) (CSGO), was used as an adsorbent for a reactive dye (C.I. Reactive Blue 221 Dye, RB221), and the adsorption and removal performances of unmodified CS and mix-modified CSGO were investigated and compared systematically at different pH values (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12). The adsorption capacities of CS and CSGO were 45.5 and 56.1 mg/g, respectively, at a pH of 2 and 5.4 and 37.2 mg/g, respectively, at a pH of 12. This indicates that TFGO was successfully introduced into CSGO, enabling π-π interactions and electrostatic attraction with the dye molecules. Additionally, benzene ring-shaped GO exhibited a high surface chemical stability, which was conducive to maintaining the stability of the acid and alkali resistance of the CSGO adsorbent. The RB221 adsorption performance of CS and CSGO at acidic condition (pH 3) and alkaline condition (pH 12) and different temperatures was investigated by calculating the adsorption kinetics and isotherms of adsorbents. Overall, the adsorption efficiency of CSGO was superior to that of CS; thus, CSGO is promising for the treatment of dye effluents in a wide pH range.

SELECTION OF CITATIONS
SEARCH DETAIL
...