Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Arch Virol ; 168(10): 259, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770801

ABSTRACT

Oat sterile dwarf virus (OSDV) is a fijivirus whose genome segments 7 to 10 were sequenced earlier. In the current study, the complete genome was sequenced. To confirm the genome ends, rapid amplification and sequencing of cDNA ends were performed. The complete OSDV genome consists of 10 double-stranded RNA (dsRNA) segments with a total size of 28,686 bp. The sense strand sequence of all segments has the terminal consensus sequence motif 5'-AACGA(5-7)… U(6-8)(A/U)GUC-3', in which the length of the stretches of A and U varies, being slightly shorter for segments 1-4 and longer for segments 5-10. The 3' end of segment 3 is …UGUC, not AGUC as in the other segments. Segments 5, 7, and 10 contain two small ORFs, while each of the other segments contains one long ORF. ORF7-2 and ORF9 are slightly longer than annotated before. Phylogenetic analysis based on amino acid sequences of the RNA-directed RNA polymerase (RdRP) placed OSDV between the plant fijiviruses and Nilaparvata lugens reovirus (NLRV), an insect fijivirus that does not replicate in plants. OSDV RdRP shares 48-49% sequence identity with other plant-infecting fijivirus RdRPs and 30% identity with that of NLRV. OSDV has earlier been reported in several Northern and Central European countries. The sequencing of the complete genome serves as a reference for identifying all segments in future high-throughput sequencing datasets, enabling the investigation of the molecular epidemiology and evolution of OSDV.


Subject(s)
Reoviridae , Reoviridae/genetics , Avena/genetics , Genome, Viral , Phylogeny , RNA-Dependent RNA Polymerase/genetics , RNA, Viral/genetics
3.
Front Microbiol ; 12: 673218, 2021.
Article in English | MEDLINE | ID: mdl-34046025

ABSTRACT

Worldwide, barley/cereal yellow dwarf viruses (YDVs) are the most widespread and damaging group of cereal viruses. In this study, we applied high-throughput sequencing technologies (HTS) to perform a virus survey on symptomatic plants from 47 cereal fields in Estonia. HTS allowed the assembly of complete genome sequences for 22 isolates of cereal yellow dwarf virus RPS, barley yellow dwarf virus GAV, barley yellow dwarf virus PAS (BYDV-PAS), barley yellow dwarf virus PAV (BYDV-PAV), and barley yellow dwarf virus OYV (BYDV-OYV). We also assembled a near-complete genome of the putative novel species BYDV-OYV from Swedish samples of meadow fescue. Previously, partial sequencing of the central part of the coat protein gene indicated that BYDV-OYV represented a putative new species closely related to BYDV-PAV-CN, which currently is recognized as a subtype of BYDV-PAV. The present study found that whereas the 3'gene block of BYDV-OYV shares the closest relationship with BYDV-PAV-CN, the 5'gene block of BYDV-OYV shows the closest relationships to that of BYDV-PAS. Recombination detection analysis revealed that BYDV-OYV is a parental virus for both. Analysis of complete genome sequence data indicates that both BYDV-OYV and BYDV-PAV-CN meet the species criteria of genus Luteovirus. The study discusses BYDV phylogeny, and through a systematic in silico analysis of published primers for YDV detection, the existing gaps in current diagnostic practices for detection of YDVs, proposing primer pairs based on the most recent genomic information for the detection of different BYDV species. Thanks to the rising number of sequences available in databases, continuous updating of diagnostic primers can improve test specificity, e.g., inclusivity and exclusivity at species levels. This is needed to properly survey the geographical and host distribution of the different species of the YDV complex and their prevalence in cereal/barley yellow dwarf disease epidemics.

4.
Front Plant Sci ; 11: 385, 2020.
Article in English | MEDLINE | ID: mdl-32351520

ABSTRACT

Septoria tritici blotch (STB) is caused by the ascomycete Zymoseptoria tritici and one of the predominating diseases in wheat (Triticum aestivum) in Europe. The control of STB is highly reliant on frequent fungicide applications. The primary objective of this study was to assess sensitivity levels of Z. tritici to different fungicide groups. The fungicides included in this study were epoxiconazole, prothioconazole-desthio, tebuconazole, and fluxapyroxad. A panel of 63 isolates from Estonia, Latvia, and Lithuania, and 10 isolates from Finland were tested. Fungicide sensitivity testing was carried out as a bioassay analyzing single pycnidium isolates on different fungicide concentrations. The average EC50 value in Baltic countries and Finland to epoxiconazole was high ranging from 1.04 to 2.19 ppm. For prothioconazole-desthio and tebuconazole, EC50 varied from 0.01 to 0.24 ppm, and 1.25 to 18.23 ppm, respectively. The average EC50 value for fluxapyroxad varied from 0.07 to 0.33 ppm. To explain the range of sensitivity, the samples were analyzed for CYP51 and Sdh mutations, as well as cytb G143A, CYP51 overexpression, and multidrug resistance (MDR). Frequencies of ZtCYP51 mutations D134G, V136A/C, A379G, I381V, and S524T in the Finnish-Baltic region were lower than in other European countries, but have increased compared to previous years. The frequency of cytb G143A conferring strobilurin resistance also augmented to 50-70% in the Z. tritici populations from Estonia, Finland, Latvia, and Lithuania. No Sdh mutations were found in this study, and neither strains of MDR phenotypes. However, we found a strain harboring a previously unknown transposon insertion in the promoter of the MFS1 gene, involved in drug efflux and multi-drug resistance. This new insert, however, does not confer an MDR phenotype to the strain.

5.
Phytopathology ; 110(1): 68-79, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31631806

ABSTRACT

High-throughput sequencing technologies were used to identify plant viruses in cereal samples surveyed from 2012 to 2017. Fifteen genome sequences of a tenuivirus infecting wheat, oats, and spelt in Estonia, Norway, and Sweden were identified and characterized by their distances to other tenuivirus sequences. Like most tenuiviruses, the genome of this tenuivirus contains four genomic segments. The isolates found from different countries shared at least 92% nucleotide sequence identity at the genome level. The planthopper Javesella pellucida was identified as a vector of the virus. Laboratory transmission tests using this vector indicated that wheat, oats, barley, rye, and triticale, but none of the tested pasture grass species (Alopecurus pratensis, Dactylis glomerata, Festuca rubra, Lolium multiflorum, Phleum pratense, and Poa pratensis), are susceptible. Taking into account the vector and host range data, the tenuivirus we have found most probably represents European wheat striate mosaic virus first identified about 60 years ago. Interestingly, whereas we were not able to infect any of the tested cereal species mechanically, Nicotiana benthamiana was infected via mechanical inoculation in laboratory conditions, displaying symptoms of yellow spots and vein clearing evolving into necrosis, eventually leading to plant death. Surprisingly, one of the virus genome segments (RNA2) encoding both a putative host systemic movement enhancer protein and a putative vector transmission factor was not detected in N. benthamiana after several passages even though systemic infection was observed, raising fundamental questions about the role of this segment in the systemic spread in several hosts.


Subject(s)
Genome, Viral , Mosaic Viruses , Plant Viruses , Animals , Edible Grain/virology , Genome, Viral/genetics , Hemiptera/virology , Mosaic Viruses/genetics , Norway , Plant Diseases/virology , Plant Viruses/genetics , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL