Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-21266138

ABSTRACT

Wastewater-based epidemiology has gained attention throughout the world for detection of SARS-CoV-2 RNA in wastewater to supplement clinical testing. Methods have been developed using both the liquid and the solid fraction of wastewater, with some studies reporting higher concentrations in solids. To investigate this relationship further, we collaborated with six other laboratories to conduct a study across five publicly owned treatment works (POTWs) where both primary solids and raw wastewater influent samples were collected and quantified for SARS-CoV-2 RNA. Solids and influent samples were processed by participating laboratories using their respective methods and retrospectively paired based on date of collection. SARS-CoV-2 RNA concentrations by mass (gene copies per gram) were higher in solids than in influent by approximately three orders of magnitude. Concentrations in matched solids and influent were positively and significantly correlated at all five POTWs. RNA concentrations in both solids and influent were correlated to COVID-19 incidence rates in the sewershed and thus representative of disease burden; the solids methods appeared to produce a comparable relationship between SARS-CoV-2 RNA concentration measurements and incidence rates across all POTWs. Solids and influent methods showed comparable sensitivity, N gene detection frequency, and calculated empirical incidence rate lower limits. Analysis of solids has the advantage of using less sample volume to achieve similar sensitivity to influent methods.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20194472

ABSTRACT

Wastewater-based epidemiology (WBE) may be useful for informing public health response to viral diseases like COVID-19 caused by SARS-CoV-2. We quantified SARS-CoV-2 RNA in wastewater influent and primary settled solids in two wastewater treatment plants to inform the pre-analytical and analytical approaches, and to assess whether influent or solids harbored more viral targets. The primary settled solids samples resulted in higher SARS-CoV-2 detection frequencies than the corresponding influent samples. Likewise, SARS-CoV-2 RNA was more readily detected in solids using one-step digital droplet (dd)RT-PCR than with two-step RT-QPCR and two-step ddRT-PCR, likely owing to reduced inhibition with the one-step ddRT-PCR assay. We subsequently analyzed a longitudinal time series of 89 settled solids samples from a single plant for SARS-CoV-2 RNA as well as coronavirus recovery (bovine coronavirus) and fecal strength (pepper mild mottle virus, PMMoV) controls. SARS-CoV-2 RNA targets N1 and N2 concentrations correlate positively and significantly with COVID-19 clinical confirmed case counts in the sewershed. Together, the results demonstrate that measuring SARS-CoV-2 RNA concentrations in settled solids may be a more sensitive approach than measuring SARs-CoV-2 in influent.

SELECTION OF CITATIONS
SEARCH DETAIL
...