Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacokinet Pharmacodyn ; 45(1): 107-125, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28975496

ABSTRACT

We are witnessing the birth of a new variety of pharmacokinetics where non-integer-order differential equations are employed to study the time course of drugs in the body: this is dubbed "fractional pharmacokinetics". The presence of fractional kinetics has important clinical implications such as the lack of a half-life, observed, for example with the drug amiodarone and the associated irregular accumulation patterns following constant and multiple-dose administration. Building models that accurately reflect this behaviour is essential for the design of less toxic and more effective drug administration protocols and devices. This article introduces the readers to the theory of fractional pharmacokinetics and the research challenges that arise. After a short introduction to the concepts of fractional calculus, and the main applications that have appeared in literature up to date, we address two important aspects. First, numerical methods that allow us to simulate fractional order systems accurately and second, optimal control methodologies that can be used to design dosing regimens to individuals and populations.


Subject(s)
Drug Dosage Calculations , Models, Biological , Pharmaceutical Preparations/administration & dosage , Pharmacokinetics , Algorithms , Computer Simulation , Fractals , Humans
2.
J Chem Inf Model ; 57(9): 2161-2172, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28812890

ABSTRACT

Engineered nanomaterials (ENMs) are increasingly infiltrating our lives as a result of their applications across multiple fields. However, ENM formulations may result in the modulation of pathways and mechanisms of toxic action that endanger human health and the environment. Alternative testing methods such as in silico approaches are becoming increasingly popular for assessing the safety of ENMs, as they are cost- and time-effective. Additionally, computational approaches support the industrial safer-by-design challenge and the REACH legislation objective of reducing animal testing. Because of the novelty of the field, there is also an evident need for harmonization in terms of databases, ontology, and modeling infrastructures. To this end, we present Jaqpot Quattro, a comprehensive open-source web application for ENM modeling with emphasis on predicting adverse effects of ENMs. We describe the system architecture and outline the functionalities, which include nanoQSAR modeling, validation services, read-across predictions, optimal experimental design, and interlaboratory testing.


Subject(s)
Informatics/methods , Internet , Nanostructures/adverse effects , Engineering , Nanostructures/chemistry , Structure-Activity Relationship , User-Computer Interface
3.
Beilstein J Nanotechnol ; 6: 1609-34, 2015.
Article in English | MEDLINE | ID: mdl-26425413

ABSTRACT

BACKGROUND: The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. RESULTS: The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. CONCLUSION: We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly interfaces and graphical summaries of the data, and how these resources facilitate the modelling of reproducible quantitative structure-activity relationships for nanomaterials (NanoQSAR).

4.
Comput Methods Programs Biomed ; 116(3): 193-204, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24986530

ABSTRACT

In this paper the model predictive control (MPC) technology is used for tackling the optimal drug administration problem. The important advantage of MPC compared to other control technologies is that it explicitly takes into account the constraints of the system. In particular, for drug treatments of living organisms, MPC can guarantee satisfaction of the minimum toxic concentration (MTC) constraints. A whole-body physiologically-based pharmacokinetic (PBPK) model serves as the dynamic prediction model of the system after it is formulated as a discrete-time state-space model. Only plasma measurements are assumed to be measured on-line. The rest of the states (drug concentrations in other organs and tissues) are estimated in real time by designing an artificial observer. The complete system (observer and MPC controller) is able to drive the drug concentration to the desired levels at the organs of interest, while satisfying the imposed constraints, even in the presence of modelling errors, disturbances and noise. A case study on a PBPK model with 7 compartments, constraints on 5 tissues and a variable drug concentration set-point illustrates the efficiency of the methodology in drug dosing control applications. The proposed methodology is also tested in an uncertain setting and proves successful in presence of modelling errors and inaccurate measurements.


Subject(s)
Algorithms , Artificial Intelligence , Cacodylic Acid/administration & dosage , Cacodylic Acid/pharmacokinetics , Drug Monitoring/methods , Drug Therapy, Computer-Assisted/methods , Models, Biological , Administration, Oral , Animals , Computer Simulation , Dermatologic Agents/administration & dosage , Injections, Intravenous , Maximum Tolerated Dose , Mice , Organ Specificity , Tissue Distribution
5.
Altern Lab Anim ; 41(1): 127-35, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23614549

ABSTRACT

The prioritisation of chemical compounds is important for the identification of those chemicals that represent the highest threat to the environment. As part of the CADASTER project (http: / /www.cadaster.eu), we developed an online web tool that allows the calculation of the environmental risk of chemical compounds from a web interface. The environmental fate of compounds in the aquatic compartment is assessed by using the SimpleBox model, while adverse effects on the aquatic compartment are assessed by the Species Sensitivity Distribution approach. The main purpose of this web tool is to exemplify the use of quantitative structure-activity relationships (QSARs) to support risk assessment. A case study of QSAR integrated risk assessment of 209 polybrominated diphenyl ethers (PBDEs) demonstrates the treatment and influence of uncertainty in the predicted physicochemical and toxicity parameters in probabilistic risk assessment.


Subject(s)
Halogenated Diphenyl Ethers/toxicity , Quantitative Structure-Activity Relationship , Animals , Internet , Risk Assessment
6.
Comput Methods Programs Biomed ; 108(3): 1022-35, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22867981

ABSTRACT

In this paper, we study the problem of determining the optimal drug administration strategy when only a finite number of different dosages are available, a lower bound is posed on the time intervals between two consecutive doses, and drug concentrations should not exceed the toxic concentration levels. The presence of only binary variables leads to the adoption of an integer programming (IP) scheme for the formulation and solution of the drug dose optimal control problem. The proposed method is extended to account for the stochastic formulation of the optimal control problem, so that it can be used in practical applications where large populations of patients are to be treated. A Finite Impulse Response (FIR) model derived from experimental pharmacokinetic data is employed to correlate the administered drug dose with the concentration-time profiles of the drug in the compartments (organs) of the body.


Subject(s)
Drug Therapy , Chemistry, Pharmaceutical , Humans , Models, Theoretical , Stochastic Processes
7.
J Cheminform ; 2(1): 7, 2010 Aug 31.
Article in English | MEDLINE | ID: mdl-20807436

ABSTRACT

OpenTox provides an interoperable, standards-based Framework for the support of predictive toxicology data management, algorithms, modelling, validation and reporting. It is relevant to satisfying the chemical safety assessment requirements of the REACH legislation as it supports access to experimental data, (Quantitative) Structure-Activity Relationship models, and toxicological information through an integrating platform that adheres to regulatory requirements and OECD validation principles. Initial research defined the essential components of the Framework including the approach to data access, schema and management, use of controlled vocabularies and ontologies, architecture, web service and communications protocols, and selection and integration of algorithms for predictive modelling. OpenTox provides end-user oriented tools to non-computational specialists, risk assessors, and toxicological experts in addition to Application Programming Interfaces (APIs) for developers of new applications. OpenTox actively supports public standards for data representation, interfaces, vocabularies and ontologies, Open Source approaches to core platform components, and community-based collaboration approaches, so as to progress system interoperability goals.The OpenTox Framework includes APIs and services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and reporting which may be combined into multiple applications satisfying a variety of different user needs. OpenTox applications are based on a set of distributed, interoperable OpenTox API-compliant REST web services. The OpenTox approach to ontology allows for efficient mapping of complementary data coming from different datasets into a unifying structure having a shared terminology and representation.Two initial OpenTox applications are presented as an illustration of the potential impact of OpenTox for high-quality and consistent structure-activity relationship modelling of REACH-relevant endpoints: ToxPredict which predicts and reports on toxicities for endpoints for an input chemical structure, and ToxCreate which builds and validates a predictive toxicity model based on an input toxicology dataset. Because of the extensible nature of the standardised Framework design, barriers of interoperability between applications and content are removed, as the user may combine data, models and validation from multiple sources in a dependable and time-effective way.

SELECTION OF CITATIONS
SEARCH DETAIL
...