Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 227: 462-469, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31003131

ABSTRACT

Different light combinations can improve phytoremediation efficiency by increasing the biomass yield and metal concentrations of plants. However, there has been rare research of using hyperaccumulators to change metal fractions and its possible leaching risk during phytoremediation. It was investigated in this study the impacts of different intensities of blue and red light mixed on the biomass production and metal uptake of Noccaea caerulescens and the changes of water soluble and exchangeable metal fractions in soil. The biomass of N. caerulescens increased with light intensity. The increment was relatively slow at 50 m-2 s-1, dramatically increased at 200 m-2 s-1 and decreased significantly when beyond. Under optimal light condition, N. caerulescens produced less biomass than Thlaspi arvense, but the former is significantly more efficient in phytoremediation than the latter because it can accumulate significantly more metals per unit biomass. Without light irradiation, N. caerulescens can deteriorate the potential leaching risk of Cu and Pb by increasing their water soluble and exchangeable fractions in soil comparing with T. arvense. The proportions of bioavailable fractions did not change under the treatment of light at an intensity of 50 m-2 s-1, but decreased obviously when the intensity exceeded 100 m-2 s-1. Therefore, using hyperaccumulator for multiple metal contaminated soil remediation should be conducted with caution since the species can mobilize all metals in soil but only hyperaccumulate part of them, and proper intensity of light can improve the phytoremediation effect and alleviate the leaching risk through decreasing bioactive metal fractions in soil.


Subject(s)
Biodegradation, Environmental , Brassicaceae/metabolism , Metals/metabolism , Soil Pollutants/metabolism , Biomass , Metals/analysis , Metals/chemistry , Photochemical Processes , Soil , Soil Pollutants/analysis , Soil Pollutants/chemistry , Thlaspi
2.
J Hazard Mater ; 368: 141-148, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30669038

ABSTRACT

Hyperaccumulators can accumulate high amounts of specific metals and have been widely used to remediate metal polluted soil. However, organic acid secretion and soil acidification (two important mechanisms for hyperaccumulators to mobilize and extract metals) can also activate non-hyperaccumulated metals and then increase the leaching risk. The decontamination efficiency and leaching risk of using Noccaea caerulescens (formerly Thlaspi caerulescens) and Thlaspi arvense were compared in the present study. Although N. caerulescens accumulated significantly more Cd and Zn than T. arvense, it increased the leaching risk of Pb and Cu as well. Under magnetic fields of 30, 60, 120 and 150 mT, the biomass production of N. caerulescens was increased by 18.5, 48.9, 80.4, and 29.3% respectively, but decreased by 21.7% under 400 mT. Comparing with the control, plants raised from seeds pre-treated by magnetic fields accumulated 37.8-250.1% more metals and reduced the leachate volume and leached metals by 1.1-32.9% and 4.6-48.1% respectively. Considering remediation efficiency, environmental risk alleviation and energy consumption, N. caerulescens treated by 120 mT magnetic field is suited to remediate multi-metal polluted soil.


Subject(s)
Brassicaceae/metabolism , Magnetic Fields , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , China , Metals, Heavy/metabolism , Soil Pollutants/metabolism , Thlaspi/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...