Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Arch Microbiol ; 206(7): 308, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38896139

ABSTRACT

Prion-like proteins (PrLPs) have emerged as beneficial molecules with implications in adaptive responses. These proteins possess a conserved prion-like domain (PrLD) which is an intrinsically disordered region capable of adopting different conformations upon perceiving external stimuli. Owing to changes in protein conformation, functional characteristics of proteins harboring PrLDs get altered thereby, providing a unique mode of protein-based regulation. Since PrLPs are ubiquitous in nature and involved in diverse functions, through this study, we aim to explore the role of such domains in yet another important physiological process viz. plant-microbe interactions to get insights into the mechanisms dictating cross-kingdom interactions. We have evaluated the presence and functions of PrLPs in 18 different plant-associated fungi of agricultural importance to unravel their role in plant-microbe interactions. Of the 241,997 proteins scanned, 3,820 (~ 1.6%) were identified as putative PrLPs with pathogenic fungi showing significantly higher PrLP density than their beneficial counterparts. Further, through GO enrichment analysis, we could predict several PrLPs from pathogenic fungi to be involved in virulence and formation of stress granules. Notably, PrLPs involved in (retro)transposition were observed exclusively in pathogenic fungi. We even analyzed publicly available data for the expression alterations of fungal PrLPs upon their interaction with their respective hosts which revealed perturbation in the levels of some PrLP-encoding genes during interactions with plants. Overall, our work sheds light into the probable role of prion-like candidates in plant-fungi interaction, particularly in context of pathogenesis, paving way for more focused studies for validating their role.


Subject(s)
Fungal Proteins , Fungi , Plants , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Plants/microbiology , Fungi/genetics , Fungi/metabolism , Fungi/pathogenicity , Computer Simulation , Plant Diseases/microbiology , Prion Proteins/metabolism , Prion Proteins/genetics , Prion Proteins/chemistry , Prions/metabolism , Prions/genetics , Prions/chemistry , Virulence , Host-Pathogen Interactions
2.
Plant Physiol Biochem ; 207: 108363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38281341

ABSTRACT

Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.


Subject(s)
MicroRNAs , Oryza , Oryza/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Edible Grain/metabolism , Crops, Agricultural/genetics , Gene Expression Regulation, Plant/genetics
3.
Plant Sci ; 338: 111922, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952767

ABSTRACT

One of the general consequences of stress in plants is the accumulation of reactive oxygen (ROS) and carbonyl species (like methylglyoxal) to levels that are detrimental for plant growth. These reactive species are inherently produced in all organisms and serve different physiological functions but their excessive accumulation results in cellular toxicity. It is, therefore, essential to restore equilibrium between their synthesis and breakdown to ensure normal cellular functioning. Detoxification mechanisms that scavenge these reactive species are considered important for stress mitigation as they maintain redox balance by restricting the levels of ROS, methylglyoxal and other reactive species in the cellular milieu. Stress tolerance imparted to plants by root-associated microbes involves a multitude of mechanisms, including maintenance of redox homeostasis. By improving the overall antioxidant response in plants, microbes can strengthen defense pathways and hence, the adaptive abilities of plants to sustain growth under stress. Hence, through this review we wish to highlight the contribution of root microbiota in modulating the levels of reactive species and thereby, maintaining redox homeostasis in plants as one of the important mechanisms of stress alleviation. Further, we also examine the microbial mechanisms of resistance to oxidative stress and their role in combating plant stress.


Subject(s)
Antioxidants , Pyruvaldehyde , Reactive Oxygen Species/metabolism , Pyruvaldehyde/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Plants/metabolism , Oxidation-Reduction , Homeostasis
4.
Plant Physiol ; 192(3): 2161-2184, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36879389

ABSTRACT

Methylglyoxal (MG), a toxic compound produced as a by-product of several cellular processes, such as respiration and photosynthesis, is well known for its deleterious effects, mainly through glycation of proteins during plant stress responses. However, very little is known about its impact on fruit ripening. Here, we found that MG levels are maintained at high levels in green tomato (Solanum lycopersicum L.) fruits and decline during fruit ripening despite a respiratory burst during this transition. We demonstrate that this decline is mainly mediated through a glutathione-dependent MG detoxification pathway and primarily catalyzed by a Glyoxalase I enzyme encoded by the SlGLYI4 gene. SlGLYI4 is a direct target of the MADS-box transcription factor RIPENING INHIBITOR (RIN), and its expression is induced during fruit ripening. Silencing of SlGLYI4 leads to drastic MG overaccumulation at ripening stages of transgenic fruits and interferes with the ripening process. MG most likely glycates and inhibits key enzymes such as methionine synthase and S-adenosyl methionine synthase in the ethylene biosynthesis pathway, thereby indirectly affecting fruit pigmentation and cell wall metabolism. MG overaccumulation in fruits of several nonripening or ripening-inhibited tomato mutants suggests that the tightly regulated MG detoxification process is crucial for normal ripening progression. Our results underpin a SlGLYI4-mediated regulatory mechanism by which MG detoxification controls fruit ripening in tomato.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , MADS Domain Proteins/metabolism , Fruit/genetics , Fruit/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Pyruvaldehyde/metabolism , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
5.
Plant Cell Environ ; 46(2): 518-548, 2023 02.
Article in English | MEDLINE | ID: mdl-36377315

ABSTRACT

In plants, glyoxalase enzymes are activated under stress conditions to mitigate the toxic effects of hyperaccumulated methylglyoxal (MG), a highly reactive carbonyl compound. Until recently, a glutathione-dependent bi-enzymatic pathway involving glyoxalase I (GLYI) and glyoxalase II (GLYII) was considered the primary MG-detoxification system. Recently, a new glutathione-independent glyoxalase III (GLYIII) mediated direct route was also reported in plants. However, the physiological significance of this new pathway remains to be elucidated across plant species. This study identified the full complement of 22 glyoxalases in tomato. Based on their strong induction under multiple abiotic stresses, SlGLYI4, SlGLYII2 and SlGLYIII2 were selected candidates for further functional characterisation. Stress-inducible overexpression of both glutathione-dependent (SlGLYI4 + SlGLYII2) and independent (SlGLYIII2) pathways led to enhanced tolerance in both sets of transgenic plants under abiotic stresses. However, SlGLYIII2 overexpression (OE) plants outperformed the SlGLYI4 + SlGLYII2 OE counterparts for their stress tolerance under abiotic stresses. Further, knockdown of SlGLYIII2 resulted in plants with exacerbated stress responses than those silenced for both SlGLYI4 and SlGLYII2. The superior performance of SlGLYIII2 OE tomato plants for better growth and yield under salt and osmotic treatments could be attributed to better GSH/GSSG ratio, lower reactive oxygen species levels, and enhanced antioxidant potential, indicating a prominent role of GLYIII MG-detoxification pathway in abiotic stress mitigation in this species.


Subject(s)
Lactoylglutathione Lyase , Solanum lycopersicum , Solanum lycopersicum/genetics , Osmotic Pressure , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , Sodium Chloride/pharmacology , Glutathione/metabolism , Plants, Genetically Modified/metabolism , Stress, Physiological , Plant Proteins/genetics , Plant Proteins/metabolism , Pyruvaldehyde/metabolism
6.
Plant Physiol Biochem ; 194: 302-314, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36442361

ABSTRACT

In contrast to bacterial, yeast and animal systems, topoisomerases (topo) from plants have not been well studied. In this report, we generated four truncated topoisomerase II (Topo II) cDNA fragments encoding different functional domains of Nicotiana tabacum topo II (NtTopoII). Each of these recombinant polypeptides was expressed alone or in combination in temperature-sensitive topoisomerase II yeast mutants. Recombinant NtTopoII with truncated polypeptides fails to target the yeast nuclei and does not rescue the temperature-sensitive phenotype. In contrast complementation was achieved with the full-length NtTopoII, which localized to the yeast nucleus. These observations suggested the presence of a potent nuclear localization signal (NLS) in the extreme C-terminal 314 amino acid residues of NtTopoII that functioned effectively in the heterologous yeast system. Biochemical characterization of purified recombinant full-length and the partial NtTopoII polypeptides revealed that the ATP-binding and hydrolysis region of NtTopoIIwas located at 413 amino acid N-terminal region and this ATPase domain is functional both when it is expressed as a separate polypeptide or as part of the holoenzyme. The present findings also revealed that all NtTopoII truncated polypeptides were detrimental for in vitro supercoiled DNA relaxation and/or DNA nicking and ligation activity. Further, we discuss the possible disruption of coordinated macromolecular interface movements and the dimer interactions in truncated NtTopoII that are required for functional topoisomerase activity.


Subject(s)
DNA Topoisomerases, Type II , Nicotiana , Animals , DNA Topoisomerases, Type II/genetics , DNA Topoisomerases, Type II/chemistry , DNA Topoisomerases, Type II/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Amino Acid Sequence , Saccharomyces cerevisiae/metabolism , Amino Acids
7.
J Biomol Struct Dyn ; 41(15): 7490-7510, 2023.
Article in English | MEDLINE | ID: mdl-36111599

ABSTRACT

Zinc plays a very critical role and function in all organisms. Its deficiency can cause a serious issue. In Oryza sativa, the ZRT/IRT transporter-like proteins play a role in the zinc metal uptake and transport. Few OsZIPs genes have been validated and characterized for their biological functions and most of OsZIPs are not well physiologically, biochemically and phenotypically characterized. In the current study, they analyzed for their function through subcellular localization, phylogenetic analysis, homology modeling, expression analysis, protein-protein interaction (PPI) network prediction, and prediction of their binding sites. Hierarchical clustering of OsZIP genes based on different anatomical parts and developmental stages also orthologs prediction was identified. The presence of SNPs, SSRs, ESTs, FSTs, MPSS, and SAGE tags were analyzed for useful development of markers. SNPs were identified in all OsZIPs genes and each gene was further classified based on their number and position in the 3'UTR and 5'UTR regions of the gene-specific sequences. Binding clusters and their location on the protein sequences were predicted. We found Changing in residues number and position which were due to partial overlapping and sequence alignment, but they share the same mechanism of binding and transporting Zinc. A wide range of CRISPR Cas9 gRNAs was designed based on single nucleotide polymorphism (SNP) for each OsZIP transporter gene for well-function identification and characterization with genome-wide association studies. Hence this study would provide useful information, understanding, and predicting molecular insights for the future studies that will help for improvement of nutritional quality of rice varieties.Communicated by Ramaswamy H. Sarma.

8.
Front Plant Sci ; 13: 866409, 2022.
Article in English | MEDLINE | ID: mdl-35646001

ABSTRACT

Plants can adapt to different environmental conditions and can survive even under very harsh conditions. They have developed elaborate networks of receptors and signaling components, which modulate their biochemistry and physiology by regulating the genetic information. Plants also have the abilities to transmit information between their different parts to ensure a holistic response to any adverse environmental challenge. One such phenomenon that has received greater attention in recent years is called stress priming. Any milder exposure to stress is used by plants to prime themselves by modifying various cellular and molecular parameters. These changes seem to stay as memory and prepare the plants to better tolerate subsequent exposure to severe stress. In this review, we have discussed the various ways in which plants can be primed and illustrate the biochemical and molecular changes, including chromatin modification leading to stress memory, with major focus on thermo-priming. Alteration in various hormones and their subsequent role during and after priming under various stress conditions imposed by changing climate conditions are also discussed.

9.
Physiol Plant ; 174(3): e13693, 2022 May.
Article in English | MEDLINE | ID: mdl-35483971

ABSTRACT

Methylglyoxal (MG) is a metabolically generated highly cytotoxic compound that accumulates in all living organisms, from Escherichia coli to humans, under stress conditions. To detoxify MG, nature has evolved reduced glutathione (GSH)-dependent glyoxalase and NADPH-dependent aldo-keto reductase systems. But both GSH and NADPH have been reported to be limiting in plants under stress conditions, and thus detoxification might not be performed efficiently. Recently, glyoxalase III (GLY III)-like enzyme activity has been reported from various species, which can detoxify MG without any cofactor. In the present study, we have tested whether an E. coli gene, hchA, encoding a functional GLY III, could provide abiotic stress tolerance to living systems. Overexpression of this gene showed improved tolerance in E. coli and Saccharomyces cerevisiae cells against salinity, dicarbonyl, and oxidative stresses. Ectopic expression of the E. coli GLY III gene (EcGLY-III) in transgenic tobacco plants confers tolerance against salinity at both seedling and reproductive stages as indicated by their height, weight, membrane stability index, and total yield potential. Transgenic plants showed significantly increased glyoxalase and antioxidant enzyme activity that resisted the accumulation of excess MG and reactive oxygen species (ROS) during stress. Moreover, transgenic plants showed more anti-glycation activity to inhibit the formation of advanced glycation end product (AGE) that might prevent transgenic plants from stress-induced senescence. Taken together, all these observations indicate that overexpression of EcGLYIII confers salinity stress tolerance in plants and should be explored further for the generation of stress-tolerant plants.


Subject(s)
Lactoylglutathione Lyase , Salt Tolerance , Aldehyde Oxidoreductases , Antioxidants/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Plant , Lactoylglutathione Lyase/genetics , Lactoylglutathione Lyase/metabolism , NADP/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Pyruvaldehyde/chemistry , Pyruvaldehyde/metabolism , Reactive Oxygen Species/metabolism , Salinity , Stress, Physiological , Nicotiana
10.
Environ Microbiol ; 24(6): 2817-2836, 2022 06.
Article in English | MEDLINE | ID: mdl-34435423

ABSTRACT

Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.


Subject(s)
Arabidopsis , Pyruvaldehyde , Arabidopsis/genetics , Plants , Salt Stress , Salt Tolerance , Stress, Physiological/physiology
11.
Physiol Mol Biol Plants ; 27(11): 2579-2588, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34924712

ABSTRACT

Methylglyoxal (MG) is ubiquitously produced in all living organisms as a byproduct of glycolysis, higher levels of which are cytotoxic, leading to oxidative stress and apoptosis in the living systems. Though its generation is spontaneous but its detoxification involves glyoxalase pathway genes. Based on this understanding, the present study describes the possible role of MG as a novel non-antibiotic-based selection agent in rice. Further, by metabolizing MG, the glyoxalase pathway genes viz. glyoxalase I (GLYI) and glyoxalase II (GLYII), may serve as selection markers. Therefore, herein, transgenic rice harboring GLYI-GLYII genes (as selection markers) were developed and the effect of MG as a selection agent was assessed. The 3 mM MG concentration was observed as optimum for the selection of transformed calli, allowing efficient callus induction and proliferation along with high regeneration frequency (55 ± 2%) of the transgenic calli. Since the transformed calli exhibited constitutively higher activity of GLYI and GLYII enzymes compared to the wild type calli, the rise in MG levels was restricted even upon exogenous addition of MG during the selection process, resulting in efficient selection of the transformed calli. Therefore, MG-based selection method is a useful and efficient system for selection of transformed plants without significantly compromising the transformation efficiency. Further, this MG-based selection system is bio-safe and can pave way towards better public acceptance of transgenic plants.

12.
Physiol Mol Biol Plants ; 27(10): 2407-2420, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34744374

ABSTRACT

Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.

13.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34681693

ABSTRACT

Serotonin (Ser) and melatonin (Mel) serve as master regulators of plant growth and development by influencing diverse cellular processes. The enzymes namely, tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) catalyse the formation of Ser from tryptophan. Subsequently, serotonin N-acetyl transferase (SNAT) and acetyl-serotonin methyltransferase (ASMT) form Mel from Ser. Plant genomes harbour multiple genes for each of these four enzymes, all of which have not been identified. Therefore, to delineate information regarding these four gene families, we carried out a genome-wide analysis of the genes involved in Ser and Mel biosynthesis in Arabidopsis, tomato, rice and sorghum. Phylogenetic analysis unravelled distinct evolutionary relationships among these genes from different plants. Interestingly, no gene family except ASMTs showed monocot- or dicot-specific clustering of respective proteins. Further, we observed tissue-specific, developmental and stress/hormone-mediated variations in the expression of the four gene families. The light/dark cycle also affected their expression in agreement with our quantitative reverse transcriptase-PCR (qRT-PCR) analysis. Importantly, we found that miRNAs (miR6249a and miR-1846e) regulated the expression of Ser and Mel biosynthesis under light and stress by influencing the expression of OsTDC5 and OsASMT18, respectively. Thus, this study may provide opportunities for functional characterization of suitable target genes of the Ser and Mel pathway to decipher their exact roles in plant physiology.


Subject(s)
Acetylserotonin O-Methyltransferase/genetics , Aromatic-L-Amino-Acid Decarboxylases/genetics , Arylalkylamine N-Acetyltransferase/genetics , Cytochrome P-450 Enzyme System/genetics , Magnoliopsida/metabolism , Melatonin/biosynthesis , Serotonin/biosynthesis , Acetylserotonin O-Methyltransferase/metabolism , Arabidopsis/metabolism , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Arylalkylamine N-Acetyltransferase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Gene Expression Regulation, Plant , Solanum lycopersicum/metabolism , Magnoliopsida/enzymology , Magnoliopsida/genetics , Magnoliopsida/physiology , Oryza/metabolism , Phylogeny , Plant Proteins/metabolism , Sequence Analysis, DNA , Sorghum/metabolism
14.
Front Plant Sci ; 12: 707286, 2021.
Article in English | MEDLINE | ID: mdl-34381483

ABSTRACT

Prions are often considered as molecular memory devices, generating reproducible memory of a conformational change. Prion-like proteins (PrLPs) have been widely demonstrated to be present in plants, but their role in plant stress and memory remains unexplored. In this work, we report the widespread presence of PrLPs in plants through a comprehensive meta-analysis of 39 genomes representing major taxonomic groups. We find diverse functional roles associated with these proteins in various species and term the full complement of PrLPs in a genome as its "prionome." In particular, we found the rice prionome being significantly enriched in transposons/retrotransposons (Ts/RTRs) and identified over 60 rice PrLPs that were differentially regulated in stress and developmental responses. This prompted us to explore whether and to what extent PrLPs may build stress memory. By integrating the available rice interactome, transcriptome, and regulome data sets, we could find links between stress and memory pathways that would not have otherwise been discernible. Regulatory inferences derived from the superimposition of these data sets revealed a complex network and cross talk between PrLPs, transcription factors (TFs), and the genes involved in stress priming. This integrative meta-analysis connects transient and transgenerational memory mechanisms in plants with PrLPs, suggesting that plant memory may rely upon protein-based signals in addition to chromatin-based epigenetic signals. Taken together, our work provides important insights into the anticipated role of prion-like candidates in stress and memory, paving the way for more focused studies for validating the role of the identified PrLPs in memory acclimation.

15.
Plant Cell Rep ; 40(11): 2225-2245, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34050797

ABSTRACT

Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.


Subject(s)
Host-Pathogen Interactions/physiology , Plant Diseases , Plants/virology , Stress, Physiological/physiology , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/virology , Plant Growth Regulators/metabolism , Plant Immunity , Plant Physiological Phenomena , Plant Viruses/pathogenicity , Plants/genetics , Plants/immunology , RNA, Plant
16.
Curr Genomics ; 22(1): 26-40, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34045922

ABSTRACT

Endosomal trafficking plays an integral role in various eukaryotic cellular activities and is vital for higher-order functions in multicellular organisms. RAB GTPases are important proteins that influence various aspects of membrane traffic, which consequently influence many cellular functions and responses. Compared to yeast and mammals, plants have evolved a unique set of plant-specific RABs that play a significant role in their development. RABs form the largest family of small guanosine triphosphate (GTP)-binding proteins, and are divided into eight sub-families named RAB1, RAB2, RAB5, RAB6, RAB7, RAB8, RAB11 and RAB18. Recent studies on different species suggest that RAB proteins play crucial roles in intracellular trafficking and cytokinesis, in autophagy, plant microbe interactions and in biotic and abiotic stress responses. This review recaptures and summarizes the roles of RABs in plant cell functions and in enhancing plant survival under stress conditions.

17.
Life (Basel) ; 11(4)2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33805566

ABSTRACT

Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.

18.
Antioxidants (Basel) ; 10(5)2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33922426

ABSTRACT

Glyoxalase pathway is the primary route for metabolism of methylglyoxal (MG), a toxic ubiquitous metabolite that affects redox homeostasis. It neutralizes MG using Glyoxalase I and Glyoxalase II (GLYI and GLYII) enzymes in the presence of reduced glutathione. In addition, there also exists a shorter route for the MG detoxification in the form of Glyoxalase III (GLYIII) enzymes, which can convert MG into D-lactate in a single-step without involving glutathione. GLYIII proteins in different systems demonstrate diverse functional capacities and play a vital role in oxidative stress response. To gain insight into their evolutionary patterns, here we studied the evolution of GLYIII enzymes across prokaryotes and eukaryotes, with special emphasis on plants. GLYIII proteins are characterized by the presence of DJ-1_PfpI domains thereby, belonging to the DJ-1_PfpI protein superfamily. Our analysis delineated evolution of double DJ-1_PfpI domains in plant GLYIII. Based on sequence and structural characteristics, plant GLYIII enzymes could be categorized into three different clusters, which followed different evolutionary trajectories. Importantly, GLYIII proteins from monocots and dicots group separately in each cluster and the each of the two domains of these proteins also cluster differentially. Overall, our findings suggested that GLYIII proteins have undergone significant evolutionary changes in plants, which is likely to confer diversity and flexibility in their functions.

19.
Funct Plant Biol ; 48(1): 8-27, 2020 12.
Article in English | MEDLINE | ID: mdl-32702286

ABSTRACT

Soil salinity, depending on its intensity, drives a challenged plant either to death, or survival with compromised productivity. On exposure to moderate salinity, plants can often survive by sacrificing some of their cells 'in target' following a route called programmed cell death (PCD). In animals, PCD has been well characterised, and involvement of mitochondria in the execution of PCD events has been unequivocally proven. In plants, mechanistic details of the process are still in grey area. Previously, we have shown that in green tissues of rice, for salt induced PCD to occur, the presence of active chloroplasts and light are equally important. In the present work, we have characterised the chloroplast proteome in rice seedlings at 12 and 24 h after salt exposure and before the time point where the signature of PCD was observed. We identified almost 100 proteins from chloroplasts, which were divided in to 11 categories based on the biological functions in which they were involved. Our results concerning the differential expression of chloroplastic proteins revealed involvement of some novel candidates. Moreover, we observed maximum phosphorylation pattern of chloroplastic proteins at an early time point (12 h) of salt exposure.


Subject(s)
Oryza , Apoptosis , Chloroplasts , Proteome , Sodium Chloride
20.
Physiol Mol Biol Plants ; 26(6): 1087-1098, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32549674

ABSTRACT

We present here a tribute to Satish Chandra Maheshwari (known to many as SCM, or simply Satish), one of the greatest plant biologists of our time. He was born on October 4, 1933, in Agra, Uttar Pradesh, India, and passed away in Jaipur, Rajasthan, India, on June 12, 2019. He is survived by two of his younger sisters (Sushila Narsimhan and Saubhagya Agrawal), a large number of friends and students from around the world. He has not only been the discoverer of pollen haploids in plants but has also contributed immensely to the field of duckweed research and gene regulation. In addition, he has made discoveries in the area of phytochrome research. The scientific community will always remember him as an extremely dedicated teacher and a passionate researcher; and for his wonderful contributions in the field of Plant Biology. See Sopory and Maheshwari (2001) for a perspective on the beginnings of Plant Molecular Biology in India; and see Raghuram (2002a, b) for the growth and contributions of this field in India.

SELECTION OF CITATIONS
SEARCH DETAIL
...