Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 5075, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33658579

ABSTRACT

This paper is aimed at investigating the process of photocrosslinking under Deep-UV irradiation of nanocomposite thin films doped with cobalt ferrite magnetic nanoparticles (MNPs). This material is composed of a hybrid sol-gel matrix in which MNP can be introduced with high concentrations up to 20 vol%. Deep-UV (193 nm) is not only interesting for high-resolution patterning but we also show an efficient photopolymerization pathway even in the presence of high concentration of MNPs. In this study, we demonstrate that the photocrosslinking is based on the free radical polymerization of the methacrylate functions of the hybrid precursor. This process is initiated by Titanium-oxo clusters. The impact of the nanoparticles on the photopolymerization kinetic and photopatterning is investigated. We finally show that the photosensitive nanocomposite is suitable to obtain micropatterns with sub-micron resolution, with a simple and versatile process, which opens many opportunities for fabrication of miniaturized magneto-optical devices for photonic applications.

2.
Opt Express ; 20(20): 22922-33, 2012 Sep 24.
Article in English | MEDLINE | ID: mdl-23037442

ABSTRACT

Near infra-red (NIR) self-guided photo-polymerization is investigated in the context of micro-optics photo-fabrication on VCSELs (Vertical-Cavity Surface Emitting Lasers). We present the optimized process we have developed to allow for a collective fabrication on III-V devices wafers under real-time optical monitoring. The influence of photo-chemical parameters on final micro-elements dimensions is studied for two types of single mode 760 nm VCSELs. The difference of the resulting tip shape between the two lasers is due to the strong differences of their emissions, as they are nicely reproduced by the computed near-field profiles. The tip shapes are also compared to those produced by the light emitted by an optical fiber and differences with VCSEL tips are discussed. Also the VCSEL characteristics with fabricated tips are discussed and found in good agreement with optical modeling.


Subject(s)
Lasers, Semiconductor , Molecular Imprinting/methods , Polymers/chemistry , Polymers/radiation effects , Infrared Rays , Refractometry , Surface Properties
3.
Nanotechnology ; 21(9): 095605, 2010 Mar 05.
Article in English | MEDLINE | ID: mdl-20124664

ABSTRACT

The present paper reports on the spatially controlled synthesis of silver nanoparticles (NPs) and silver nanowires by photosensitized reduction. In a first approach, direct photogeneration of silver NPs at the end of an optical fiber was carried out. Control of both size and density of silver NPs was possible by changing the photonic conditions. In a further development, a photochemically assisted procedure allowing silver to be deposited at the surface of a polymer microtip was implemented. Finally, polymer tips terminated by silver nanowires were fabricated by simultaneous photopolymerization and silver photoreduction. The silver NPs were characterized by UV-visible spectroscopy and scanning electron microscopy.

4.
Opt Lett ; 34(16): 2474-6, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19684820

ABSTRACT

A micrometric Fabry-Perot refractometer based on an end-of-fiber polymer tip is proposed. The fiber tip, with a length of 36 mum, was fabricated by self-guiding photopolymerization. The two-wave interferometric operation was achieved by combining the light waves generated at the interface between the single-mode fiber and the polymer tip, and at the fiber tip end (Fresnel reflection). The Fabry-Perot interferometer is coherence addressed and heterodyne interrogated, resulting into a liquid refractive index resolution of approximately 7.5x10(-4).


Subject(s)
Polymers , Refractometry/methods , Photochemical Processes , Polymers/chemistry
5.
Langmuir ; 25(14): 8161-9, 2009 Jul 21.
Article in English | MEDLINE | ID: mdl-19518080

ABSTRACT

Chemically and topographically patterned surfaces have high potential as model surfaces for studying cell and bacteria responses to surface chemistry and surface topography at a nanoscale level. In this work, we demonstrated the possibility to combine pulsed plasma polymerization and UV-irradiation to obtain topographical patterns and chemical patterns perfectly controlled at microlateral resolution and sub-micrometer depth level. Biological experiments were conducted using human osteoprogenitor cells and Escherichia coli K12. Proliferation and orientation of cells and bacteria were analyzed and discussed according to the size and the chemistry of the features. This work showed interesting opposite behavior of bacteria compared to eukaryotic cells, in response to the surface chemistry and to the surface topography. This result may be particularly useful on medical implants. From a methodological point of view, it highlighted the importance of working with versatile and well-characterized surfaces before and after sterilization. It also points out the relevance and the necessity of analyzing eukaryotic cell and bacteria adhesion in parallel way.


Subject(s)
Biocompatible Materials/adverse effects , Biocompatible Materials/chemistry , Nanostructures/adverse effects , Nanostructures/chemistry , Osteoblasts/cytology , Bacterial Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Escherichia coli/drug effects , Humans , Materials Testing , Osteoblasts/drug effects , Tissue Engineering
6.
J Microsc ; 229(Pt 3): 421-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18331489

ABSTRACT

We propose a new approach for tuning the Surface Plasmon (SP) resonance wavelength using hybrid nanoparticles. Our approach is based on nanoscale photopolymerization around metal nanoparticles. The enhanced optical near-field of silver nanoparticles triggers local photopolymerization. As a result, atomic force microscopy reveals two nanoscale polymerized lobes around nanoparticles, with a controlled effective index distribution. A spectral breaking degeneracy of surface plasmon resonance of the nanoparticles has been demonstrated by polarized extinction spectroscopy.

7.
J Microsc ; 229(Pt 1): 151-61, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18173653

ABSTRACT

This paper highlights the potential of atomic force microscopy in the pulsed force mode to investigate the photopatterning of acrylic-based films. The pulsed force mode is a nonresonant mode designed to allow approach curves to be recorded along the scanning path. It thereby provides the topography of the sample and a direct and simple local characterization of adhesion and stiffness. This mode can be used either for imaging or for locally probing the mechanical properties of a surface. In particular, a correlation between stiffness and conversion of the monomer was established. The close examination of the pulsed force mode signal brought accurate information on the photoinduced modification of the film. Polymer films with submicron photopatterning generated by interferometric illumination were analyzed by pulsed force mode. It was established that the gradient of mechanical properties throughout the films was strongly dependant on the irradiation conditions.


Subject(s)
Microscopy, Atomic Force/methods , Nanotechnology/methods , Polymers/chemistry , Surface Properties , Microscopy, Atomic Force/instrumentation
8.
Phys Rev Lett ; 98(10): 107402, 2007 Mar 09.
Article in English | MEDLINE | ID: mdl-17358565

ABSTRACT

We report on controlled nanoscale photopolymerization triggered by enhanced near fields of silver nanoparticles excited close to their dipolar plasmon resonance. By anisotropic polymerization, symmetry of the refractive index of the surrounding medium was broken: C infinity v symmetry turned to C2v symmetry. This allowed for spectral degeneracy breaking in particles plasmon resonance whose apparent peak became continuously tunable with the incident polarization. From the spectral peak, we deduced the refractive-index ellipsoid fabricated around the particles. In addition to this control of optical properties of metal nanoparticles, this method opens new routes for nanoscale photochemistry and provides a new way of quantification of the magnitude of near fields of localized surface plasmons.

SELECTION OF CITATIONS
SEARCH DETAIL
...