Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 285: 127744, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38735242

ABSTRACT

Vibrio parahaemolyticus is the leading bacterial cause of gastroenteritis associated with seafood consumption worldwide. Not all members of the species are thought to be pathogenic, thus identification of virulent organisms is essential to protect public health and the seafood industry. Correlations of human disease and known genetic markers (e.g. thermostable direct hemolysin (TDH), TDH-related hemolysin (TRH)) appear complex. Some isolates recovered from patients lack these factors, while their presence has become increasingly noted in isolates recovered from the environment. Here, we used whole-genome sequencing in combination with mammalian and insect models of infection to assess the pathogenic potential of V. parahaemolyticus isolated from European Atlantic shellfish production areas. We found environmental V. parahaemolyticus isolates harboured multiple virulence-associated genes, including TDH and/or TRH. However, carriage of these factors did not necessarily reflect virulence in the mammalian intestine, as an isolate containing TDH and the genes coding for a type 3 secretion system (T3SS) 2α virulence determinant, appeared avirulent. Moreover, environmental V. parahaemolyticus lacking TDH or TRH could be assigned to groups causing low and high levels of mortality in insect larvae, with experiments using defined bacterial mutants showing that a functional T3SS1 contributed to larval death. When taken together, our findings highlight the genetic diversity of V. parahaemolyticus isolates found in the environment, their potential to cause disease and the need for a more systematic evaluation of virulence in diverse V. parahaemolyticus to allow better genetic markers.


Subject(s)
Bacterial Proteins , Bacterial Toxins , Hemolysin Proteins , Vibrio Infections , Vibrio parahaemolyticus , Virulence Factors , Vibrio parahaemolyticus/genetics , Vibrio parahaemolyticus/pathogenicity , Vibrio parahaemolyticus/classification , Vibrio parahaemolyticus/isolation & purification , Animals , Virulence/genetics , Europe , Hemolysin Proteins/genetics , Virulence Factors/genetics , Vibrio Infections/microbiology , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Humans , Whole Genome Sequencing , Phenotype , Shellfish/microbiology , Larva/microbiology , Type III Secretion Systems/genetics , Genome, Bacterial , Seafood/microbiology
2.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36626775

ABSTRACT

AIMS: This study aims to assess the use of marine lactic acid bacteria (LAB) to reduce Vibrio parahaemolyticus levels during oyster depuration process. METHODS AND RESULTS: The inhibitory effect of 30 marine LAB strains against V. parahaemolyticus strains was evaluated by in vitro assays. A total of three positive strains (Latilactobacillus sakei SF1583, Lactococcus lactis SF1945, and Vagococcus fluvialis CD264) were selected for V. parahaemolyticus levels reduction during oyster depuration. Pacific oysters Crassostrea gigas were artificially and independently contaminated by four GFP-labelled V. parahaemolyticus strains (IFVp201, IFVp69, IFVp195, and LMG2850T) at 105 CFU ml-1 and then exposed by balneation to 106 CFU ml-1 of each LAB strains during 24 h, at 19°C. Quantification of V. parahaemolyticus in haemolymph by flow cytometry revealed variations in natural depuration of the different V. parahaemolyticus strains alone. Furthermore, the addition of LABs improved up to 1-log bacteria ml-1 the reduction of IFVp201 concentration in comparison to the control condition. CONCLUSIONS: Although further optimizations of procedure are needed, addition of marine LABs during oyster depuration may be an interesting strategy to reduce V. parahaemolyticus levels in Crassostrea gigas.


Subject(s)
Crassostrea , Lactobacillales , Ostreidae , Vibrio parahaemolyticus , Animals , Crassostrea/microbiology , Food Contamination/prevention & control , Food Contamination/analysis , Colony Count, Microbial , Temperature , Ostreidae/microbiology
3.
Environ Microbiol ; 24(9): 4401-4410, 2022 09.
Article in English | MEDLINE | ID: mdl-35384247

ABSTRACT

Vibrio parahaemolyticus infection in humans is associated with raw oyster consumption. Evaluation of V. parahaemolyticus presence in oysters is of most interest because of the economic and public health issues that it represents. To explore V. parahaemolyticus accumulation and depuration in adult Crassostrea gigas, we developed a GFP-tagged V. parahaemolyticus strain (IFVp201-gfp+ ), as well as a rapid and efficient quantification method in C. gigas oysters haemolymph by flow cytometry. Impact of the life history of C. gigas on accumulation and depuration of V. parahaemolyticus IFVp201 was subsequently investigated. We found that naive oysters, i.e. grown in controlled facilities with UV treated seawater, accumulated significantly more IFVp201 than environmental oysters, i.e. grown in intertidal environment. We hypothesized that environmental oysters could have been immune primed, thus could limit V. parahaemolyticus accumulation. Meanwhile, both naive and environmental oysters had similar depuration rates.


Subject(s)
Crassostrea , Vibrio Infections , Vibrio parahaemolyticus , Animals , Colony Count, Microbial , Humans , Seafood
SELECTION OF CITATIONS
SEARCH DETAIL
...