Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(36): 32955-32962, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720786

ABSTRACT

This work reports the synthesis and characterization of preceramic- and polymer-derived SiOC aerogels obtained from a commercial siloxane resin. The preceramic aerogels were obtained by ambient pressure drying (ambigels) and CO2 supercritical drying. Despite different drying processes, the final ceramic ambi/aerogels have very similar microstructural features in density, porosity, pore size, and specific surface area. Both materials have shown promising results for oil sorption and water cleaning. Supercritically dried-SiOC aerogel had low thermal conductivity with 0.046 W·m-1·K-1 at RT and 0.073 W·m-1·K-1 at 500 °C. These results suggest that substituting the rather complicated and expensive CO2-SC drying with the more friendly and cheap ambient pressure drying can be done without having to accept significant microstructural/property degradation.

2.
Materials (Basel) ; 15(4)2022 02 09.
Article in English | MEDLINE | ID: mdl-35207820

ABSTRACT

In this article, highly porous and transparent silicon oxycarbide (SiOC) gels are synthesized from Bis(Triethoxysilyl) methane (BTEM). The gels are synthesized by the sol-gel technique followed by both ambient pressure and supercritical drying. Then, the portion of wet gels have been pyrolyzed in a hydrogen atmosphere at 800 and 1100 °C. The FT-IR spectroscopy analysis and nitrogen sorption results indicate the successful synthesis of Si-O-Si bonds and the formation of mesopores. From a hysteresis loop, the SiOC ceramics showed the H1 type characteristic with well-defined cylindrical pore channels for the aerogel and the H2 type for the ambigel samples, indicating that the pores are distorted due to the capillary stress. The produced gels are mesoporous materials having high surface areas with a maximum of 1140 m2/g and pore volume of 2.522 cm3/g obtained from BTEM aerogels. The pyrolysis of BTEM aerogels at 800 °C results in the production of a bulk and transparent sample with a slightly pale white color, while BTEM xerogels are totally transparent and colorless at the same temperature. At 1100 °C, all the aerogels become opaque brown, confirming the formation of free carbon and crystalline silicon.

3.
Materials (Basel) ; 15(3)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35161013

ABSTRACT

This paper discusses the role of nitrogen (N2) gas flow conditions on the formation of silicon nitride (Si3N4) nano-felts from polysiloxane-impregnated polyurethane (PU) foams. The polymeric foam was converted into an amorphous silicon oxycarbide (SiOC) artefact during pyrolysis, which was then transformed, at a higher temperature, into a Si3N4 felt through a reaction between the decomposition products of SiOC with N2. The study identified that a N2 flux of ~2.60 cm.min-1 at the cross-section of the furnace (controlled to 100 cm3.min-1 at the inlet of the furnace using a flowmeter) substantially favored the transformation of the parent SiOC foam to Si3N4 felts. This process intensification step significantly reduced the wastage and the energy requirement while considering the material production on a bulk scale. The study also inferred that the cell sizes of the initial PU templates influenced the foam to felt transformation.

4.
Int J Mol Sci ; 22(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34948473

ABSTRACT

Bone tissue engineering has developed significantly in recent years as there has been increasing demand for bone substitutes due to trauma, cancer, arthritis, and infections. The scaffolds for bone regeneration need to be mechanically stable and have a 3D architecture with interconnected pores. With the advances in additive manufacturing technology, these requirements can be fulfilled by 3D printing scaffolds with controlled geometry and porosity using a low-cost multistep process. The scaffolds, however, must also be bioactive to promote the environment for the cells to regenerate into bone tissue. To determine if a low-cost 3D printing method for bespoke SiOC(N) porous structures can regenerate bone, these structures were tested for osteointegration potential by using human mesenchymal stem cells (hMSCs). This includes checking the general biocompatibilities under the osteogenic differentiation environment (cell proliferation and metabolism). Moreover, cell morphology was observed by confocal microscopy, and gene expressions on typical osteogenic markers at different stages for bone formation were determined by real-time PCR. The results of the study showed the pore size of the scaffolds had a significant impact on differentiation. A certain range of pore size could stimulate osteogenic differentiation, thus promoting bone regrowth and regeneration.


Subject(s)
Bone and Bones/physiology , Ceramics/chemistry , Mesenchymal Stem Cells/cytology , Silicon/chemistry , Tissue Engineering/methods , Bone Regeneration , Cell Differentiation , Cell Proliferation , Cells, Cultured , Humans , Osteogenesis , Porosity , Printing, Three-Dimensional , Tissue Scaffolds
5.
ACS Appl Mater Interfaces ; 12(45): 50772-50783, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33108160

ABSTRACT

The introduction of nanoparticles (NPs) into the breath-figure-templated self-assembly (BFTSA) process is an increasingly common method to selectively decorate a surface porous structure. In the field of prosthetic devices, besides controlling the morphology and roughness of the structure, NPs can enhance the osteointegration mechanism because of their specific ion release. Among the most widely used NPs, there are silica and hydroxyapatite (HAp). In this work, we propose a novel one-stage method to fabricate NP-decorated surface porous structures that are suitable for prosthetic coating applications. This technique combines the classical direct BFTSA process with the cavitation effect induced by an ultrasonic atomizer that generates a mist of water droplets with embedded NPs. Coatings were successfully obtained by combining a UV cross-linkable polymer precursor, alkoxy silicone, with synthesized HAp NPs, on Ti6Al4V alloy discs. The cross-linked polymeric surface porous structures at selected concentrations were then pyrolyzed in an ammonia atmosphere to obtain a silicon oxynitride (SiON) ceramic coating. Herein, we report the chemical and morphological analyses of both the polymeric and ceramic coatings as well as the effect of NPs at the interface.

6.
Materials (Basel) ; 11(12)2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30572610

ABSTRACT

We investigate the impact of solvents on the microstructure of poly(methylhydrosiloxane)/divinylbenzene (PMHS/DVB) aerogels. The gels are obtained in highly diluted conditions via hydrosilylation reaction of PMHS bearing Si-H groups and cross-linking it with C=C groups of DVB. Polymer aerogels are obtained after solvent exchange with liquid CO2 and subsequent supercritical drying. Samples are characterized using microscopy and porosimetry. Common pore-formation concepts do not provide a solid rationale for the observed data. We postulate that solubility and swelling of the cross-linked polymer in various solvents are major factors governing pore formation of these PMHS/DVB polymer aerogels.

7.
Environ Sci Pollut Res Int ; 25(11): 10619-10629, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29383645

ABSTRACT

The presence of residual color in treated textile wastewater above the regulation limits is still a critical issue in many textile districts. Innovative, polymer-derived ceramics of the Si-C-O system were here synthesized in order to obtain porous nanocomposite materials where a free carbon phase is dispersed into a silicon carbide/silicon oxycarbide network. The sorbents were comprehensively characterized for the removal of two model water-soluble dyes (i.e., the cation methylene blue and the zwitterion rhodamine B). Adsorption is very rapid and controlled by intra-particle and/or film diffusion, depending on dye concentration. Among the nanocomposites studied, the SiOC aerogel (total capacity about 45 mg/g, is easily regenerated under mild treatment (250 °C, 2 h). Adsorption of dyes is not affected by the matrix composition: removals of 150 mg/L methylene blue from river water and simulated textile wastewater with high content of metal ions (2-50 mg/L) and chemical oxygen demand (800 mg/L) were higher than 92% and quantitative for a dye concentration of 1 mg/L.


Subject(s)
Carbon/chemistry , Coloring Agents/chemistry , Methylene Blue/chemistry , Nanocomposites/chemistry , Polymers/chemistry , Rhodamines/chemistry , Adsorption , Biological Oxygen Demand Analysis , Ceramics , Porosity , Silicon , Textile Industry , Textiles , Wastewater
8.
Sci Rep ; 7: 41049, 2017 01 20.
Article in English | MEDLINE | ID: mdl-28106140

ABSTRACT

This work describes a simple technique to produce porous ceramics with aligned porosity having very high permeability and specific surface area. SiOC-based compositions were processed from blends of three types of preceramic polymer and a catalyst, followed by curing and pyrolysis. The heating applied from the bottom of molds promoted the nucleation, expansion and rising of gas bubbles, and the creation of a ceramic matrix with axially oriented channels interconnected by small round pores. The samples were analyzed by SEM, tomography, BET, water immersion porosimetry and permeation to gas flow. The resulting bodies presented levels of open porosity (69.9-83.4%), average channel diameter (0.59-1.25 mm) and permeability (0.56-3.83 × 10-9 m2) comparable to those of ceramic foams and honeycomb monoliths, but with specific surface area (4.8-121.9 m2/g) typical adsorbents, enabling these lotus-type ceramics to be advantageously used as catalytic supports and adsorption components in several environmental control applications.

9.
Nanomaterials (Basel) ; 5(1): 233-245, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-28347008

ABSTRACT

Within this work we define structural properties of the silicon carbonitride (SiCN) and silicon oxycarbide (SiOC) ceramics which determine the reversible and irreversible lithium storage capacities, long cycling stability and define the major differences in the lithium storage in SiCN and SiOC. For both ceramics, we correlate the first cycle lithiation or delithiation capacity and cycling stability with the amount of SiCN/SiOC matrix or free carbon phase, respectively. The first cycle lithiation and delithiation capacities of SiOC materials do not depend on the amount of free carbon, while for SiCN the capacity increases with the amount of carbon to reach a threshold value at ~50% of carbon phase. Replacing oxygen with nitrogen renders the mixed bond Si-tetrahedra unable to sequester lithium. Lithium is more attracted by oxygen in the SiOC network due to the more ionic character of Si-O bonds. This brings about very high initial lithiation capacities, even at low carbon content. If oxygen is replaced by nitrogen, the ceramic network becomes less attractive for lithium ions due to the more covalent character of Si-N bonds and lower electron density on the nitrogen atom. This explains the significant difference in electrochemical behavior which is observed for carbon-poor SiCN and SiOC materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...