Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 17724, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853062

ABSTRACT

Composition of pulmonary microbiome of patients with severe pneumonia is poorly known. The aim of this work was to analyse the lung microbiome of patients admitted to the intensive care unit  (ICU) with severe community acquired pneumonia (CAP) between 2019 and 2021 in comparison with a control group of 6 patients undergoing digestive surgery. As a second objective, the diagnostic capabilities of metagenomics was also studied in a small group of selected patients. The lung microbiome of patients with viral (5 with Influenza A and 8 with SARS-CoV-2) pneumonia at admission showed a similar diversity as the control group (p = 0.140 and p = 0.213 respectively). Contrarily, the group of 12 patients with pneumococcal pneumonia showed a significant lower Simpson´s index (p = 0.002). In the control group (n = 6) Proteobacteria (36.6%), Firmicutes (24.2%) and Actinobacteria (23.0%) were the predominant phyla. In SARS-CoV-2 patients (n = 8), there was a predominance of Proteobacteria (mean 41.6%) (Moraxella and Pelomonas at the genus level), Actinobacteria (24.6%) (Microbacterium) and Firmicutes (22.8%) mainly Streptococcus, Staphylococcus and Veillonella. In patients with Influenza A pneumonia (n = 5) there was a predominance of Firmicutes (35.1%) mainly Streptococcus followed by Proteobacteria (29.2%) (Moraxella, Acinetobacter and Pelomonas). In the group of pneumococcal pneumonia (n = 12) two phyla predominated: Firmicutes (53.1%) (Streptococcus) and Proteobacteria (36.5%) (Haemophilus). In the 7 patients with non-pneumococcal bacterial pneumonia Haemophilus influenzae (n = 2), Legionella pneumophila (n = 2), Klebsiella pneumoniae, Streptococcus pyogenes and Leptospira were detected by metagenomics, confirming the diagnosis done using conventional microbiological techniques. The diversity of the respiratory microbiome in patients with severe viral pneumonia at ICU admission was similar to that of the control group. Contrarily, patients with pneumococcal pneumonia showed a lower grade of diversity. At initial stages of SARS-CoV-2 infection, no important alterations in the pulmonary microbiome were observed. The analysis of bacterial microbiome showed promising results as a diagnostic tool.


Subject(s)
COVID-19 , Community-Acquired Infections , Influenza, Human , Microbiota , Pneumonia, Pneumococcal , Pneumonia, Viral , Humans , Critical Illness , SARS-CoV-2 , Lung/microbiology , Bacteria/genetics , Firmicutes , Proteobacteria , Community-Acquired Infections/microbiology
3.
Diagnostics (Basel) ; 13(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37510088

ABSTRACT

The pandemic situation caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted the need of fast, simple, and cost-effective tests for the diagnosis of emerging pathogens. RT-qPCR has been established as the reference technique for the diagnosis of SARS-CoV-2 infections. This method requires a time-consuming protocol for the extraction of the nucleic acids present in the sample. A colorimetric reverse transcription loop-mediated isothermal amplification using the calcein molecule combined with a simple extraction-free method for saliva samples (calcein RT-LAMP) has been developed. Samples are heated 95 °C for 10 min before amplification at 63 °C for 40 min. The results can be observed by fluorescence or by the naked eye with a color change from orange to green. The method was compared with commercialized available colorimetric and fluorescent RT-LAMP kits. The developed method shows better sensitivity and specificity than the colorimetric commercial RT-LAMP and the same as the fluorescent RT-LAMP, without the need of a fluorescent reader. Moreover, the calcein RT-LAMP has, compared to RT-qPCR, a sensitivity of 90% and a specificity of 100% for saliva samples with a Ct ≤ 34, without the need for expensive RT-qPCR instruments, demonstrating the potential of this method for population screening.

4.
Biosensors (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36832041

ABSTRACT

Even with the widespread uptake of vaccines, the SARS-CoV-2-induced COVID-19 pandemic continues to overwhelm many healthcare systems worldwide. Consequently, massive scale molecular diagnostic testing remains a key strategy to control the ongoing pandemic, and the need for instrument-free, economic and easy-to-use molecular diagnostic alternatives to PCR remains a goal of many healthcare providers, including WHO. We developed a test (Repvit) based on gold nanoparticles that can detect SARS-CoV-2 RNA directly from nasopharyngeal swab or saliva samples with a limit of detection (LOD) of 2.1 × 105 copies mL-1 by the naked eye (or 8 × 104 copies mL-1 by spectrophotometer) in less than 20 min, without the need for any instrumentation, and with a manufacturing price of <$1. We tested this technology on 1143 clinical samples from RNA extracted from nasopharyngeal swabs (n = 188), directly from saliva samples (n = 635; assayed by spectrophotometer) and nasopharyngeal swabs (n = 320) from multiple centers and obtained sensitivity values of 92.86%, 93.75% and 94.57% and specificities of 93.22%, 97.96% and 94.76%, respectively. To our knowledge, this is the first description of a colloidal nanoparticle assay that allows for rapid nucleic acid detection at clinically relevant sensitivity without the need for external instrumentation that could be used in resource-limited settings or for self-testing.


Subject(s)
COVID-19 , Metal Nanoparticles , Humans , Colorimetry , Saliva , RNA, Viral , SARS-CoV-2 , Gold , Pandemics , Nasopharynx , Specimen Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...