Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Genet Mol Res ; 5(4): 653-63, 2006 Nov 30.
Article in English | MEDLINE | ID: mdl-17183477

ABSTRACT

Corynebacterium pseudotuberculosis is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a C. pseudotuberculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the C. pseudotuberculosis genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to C. diphtheriae, C. glutamicum, C. efficiens, and C. jeikeium proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the C. pseudotuberculosis genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a C. pseudotuberculosis genome sequencing project that will begin this year.


Subject(s)
Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Bacterial/genetics , Corynebacterium pseudotuberculosis/genetics , Gene Library , Genome, Bacterial/genetics , Cloning, Molecular , Sequence Analysis, DNA
2.
Genet. mol. res. (Online) ; 5(4): 653-663, 2006. tab, ilus, graf
Article in English | LILACS | ID: lil-482089

ABSTRACT

Corynebacterium pseudotuberculosis is a gram-positive bacterium that causes caseous lymphadenitis in sheep and goats. However, despite the economic losses caused by caseous lymphadenitis, there is little information about the molecular mechanisms of pathogenesis of this bacterium. Genomic libraries constructed in bacterial artificial chromosome (BAC) vectors have become the method of choice for clone development in high-throughput genomic-sequencing projects. Large-insert DNA libraries are useful for isolation and characterization of important genomic regions and genes. In order to identify targets that might be useful for genome sequencing, we constructed a C. pseudotuberculosis BAC library in the vector pBeloBAC11. This library contains about 18,000 BAC clones, with inserts ranging in size from 25 to 120 kb, theoretically representing a 390-fold coverage of the C. pseudotuberculosis genome (estimated to be 2.5-3.1 Mb). Many genomic survey sequences (GSSs) with homology to C. diphtheriae, C. glutamicum, C. efficiens, and C. jeikeium proteins were observed within a sample of 215 sequenced clones, confirming their close phylogenetic relationship. Computer analyses of GSSs did not detect chimeric, deleted, or rearranged BAC clones, showing that this library has low redundancy. This GSSs collection is now available for further genetic and physical analysis of the C. pseudotuberculosis genome. The GSS strategy that we used to develop our library proved to be efficient for the identification of genes and will be an important tool for mapping, assembly, comparative, and functional genomic studies in a C. pseudotuberculosis genome sequencing project that will begin this year.


Subject(s)
Corynebacterium pseudotuberculosis/genetics , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Bacterial/genetics , Gene Library , Genome, Bacterial/genetics , Cloning, Molecular , Sequence Analysis, DNA
3.
Mamm Genome ; 10(6): 585-7, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10341090

ABSTRACT

A sheep BAC library of over three genome equivalents was constructed and arrayed in superpools and row, column, and plate pools. The library contains 90,000 clones distributed in 39 superpools. The average insert size was estimated at 123 kb. The library was screened by PCR with 77 primer pairs corresponding to ovine microsatellites distributed throughout the genome. The probability of finding a random sequence in the library could be estimated at 0.96.


Subject(s)
Chromosomes, Bacterial , Gene Library , Sheep/genetics , Animals , Deoxyribonuclease HindIII/genetics , Genome , In Situ Hybridization, Fluorescence , Male , Microsatellite Repeats , Prions/genetics , X Chromosome
4.
Infect Immun ; 66(5): 2221-9, 1998 May.
Article in English | MEDLINE | ID: mdl-9573111

ABSTRACT

The bacterial artificial chromosome (BAC) cloning system is capable of stably propagating large, complex DNA inserts in Escherichia coli. As part of the Mycobacterium tuberculosis H37Rv genome sequencing project, a BAC library was constructed in the pBeloBAC11 vector and used for genome mapping, confirmation of sequence assembly, and sequencing. The library contains about 5,000 BAC clones, with inserts ranging in size from 25 to 104 kb, representing theoretically a 70-fold coverage of the M. tuberculosis genome (4.4 Mb). A total of 840 sequences from the T7 and SP6 termini of 420 BACs were determined and compared to those of a partial genomic database. These sequences showed excellent correlation between the estimated sizes and positions of the BAC clones and the sizes and positions of previously sequenced cosmids and the resulting contigs. Many BAC clones represent linking clones between sequenced cosmids, allowing full coverage of the H37Rv chromosome, and they are now being shotgun sequenced in the framework of the H37Rv sequencing project. Also, no chimeric, deleted, or rearranged BAC clones were detected, which was of major importance for the correct mapping and assembly of the H37Rv sequence. The minimal overlapping set contains 68 unique BAC clones and spans the whole H37Rv chromosome with the exception of a single gap of approximately 150 kb. As a postgenomic application, the canonical BAC set was used in a comparative study to reveal chromosomal polymorphisms between M. tuberculosis, M. bovis, and M. bovis BCG Pasteur, and a novel 12.7-kb segment present in M. tuberculosis but absent from M. bovis and M. bovis BCG was characterized. This region contains a set of genes whose products show low similarity to proteins involved in polysaccharide biosynthesis. The H37Rv BAC library therefore provides us with a powerful tool both for the generation and confirmation of sequence data as well as for comparative genomics and other postgenomic applications. It represents a major resource for present and future M. tuberculosis research projects.


Subject(s)
Chromosome Mapping , Chromosomes, Bacterial , Gene Library , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Cloning, Molecular , Repetitive Sequences, Nucleic Acid , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...