Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 335
Filter
1.
Brain Commun ; 6(4): fcae185, 2024.
Article in English | MEDLINE | ID: mdl-39015769

ABSTRACT

The glymphatic system is an emerging target in neurodegenerative disorders. Here, we investigated the activity of the glymphatic system in genetic frontotemporal dementia with a diffusion-based technique called diffusion tensor image analysis along the perivascular space. We investigated 291 subjects with symptomatic or presymptomatic frontotemporal dementia (112 with chromosome 9 open reading frame 72 [C9orf72] expansion, 119 with granulin [GRN] mutations and 60 with microtubule-associated protein tau [MAPT] mutations) and 83 non-carriers (including 50 young and 33 old non-carriers). We computed the diffusion tensor image analysis along the perivascular space index by calculating diffusivities in the x-, y- and z-axes of the plane of the lateral ventricle body. Clinical stage and blood-based markers were considered. A subset of 180 participants underwent cognitive follow-ups for a total of 640 evaluations. The diffusion tensor image analysis along the perivascular space index was lower in symptomatic frontotemporal dementia (estimated marginal mean ± standard error, 1.21 ± 0.02) than in old non-carriers (1.29 ± 0.03, P = 0.009) and presymptomatic mutation carriers (1.30 ± 0.01, P < 0.001). In mutation carriers, lower diffusion tensor image analysis along the perivascular space was associated with worse disease severity (ß = -1.16, P < 0.001), and a trend towards a significant association between lower diffusion tensor image analysis along the perivascular space and higher plasma neurofilament light chain was reported (ß = -0.28, P = 0.063). Analysis of longitudinal data demonstrated that worsening of disease severity was faster in patients with low diffusion tensor image analysis along the perivascular space at baseline than in those with average (P = 0.009) or high (P = 0.006) diffusion tensor image analysis along the perivascular space index. Using a non-invasive imaging approach as a proxy for glymphatic system function, we demonstrated glymphatic system abnormalities in the symptomatic stages of genetic frontotemporal dementia. Such measures of the glymphatic system may elucidate pathophysiological processes in human frontotemporal dementia and facilitate early phase trials of genetic frontotemporal dementia.

3.
Sci Rep ; 14(1): 11307, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760423

ABSTRACT

We aimed to assess diagnostic accuracy of plasma p-tau181 and NfL separately and in combination in discriminating Subjective Cognitive Decline (SCD) and Mild Cognitive Impairment (MCI) patients carrying Alzheimer's Disease (AD) pathology from non-carriers; to propose a flowchart for the interpretation of the results of plasma p-tau181 and NfL. We included 43 SCD, 41 MCI and 21 AD-demented (AD-d) patients, who underwent plasma p-tau181 and NfL analysis. Twenty-eight SCD, 41 MCI and 21 AD-d patients underwent CSF biomarkers analysis (Aß1-42, Aß1-42/1-40, p-tau, t-tau) and were classified as carriers of AD pathology (AP+) it they were A+/T+ , or non-carriers (AP-) when they were A-, A+/T-/N-, or A+/T-/N+ according to the A/T(N) system. Plasma p-tau181 and NfL separately showed a good accuracy (AUC = 0.88), while the combined model (NfL + p-tau181) showed an excellent accuracy (AUC = 0.92) in discriminating AP+ from AP- patients. Plasma p-tau181 and NfL results were moderately concordant (Coehn's k = 0.50, p < 0.001). Based on a logistic regression model, we estimated the risk of AD pathology considering the two biomarkers: 10.91% if both p-tau181 and NfL were negative; 41.10 and 76.49% if only one biomarker was positive (respectively p-tau18 and NfL); 94.88% if both p-tau181 and NfL were positive. Considering the moderate concordance and the risk of presenting an underlying AD pathology according to the positivity of plasma p-tau181 and NfL, we proposed a flow chart to guide the combined use of plasma p-tau181 and NfL and the interpretation of biomarker results to detect AD pathology.


Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Neurofilament Proteins , tau Proteins , Humans , tau Proteins/blood , tau Proteins/cerebrospinal fluid , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Male , Female , Neurofilament Proteins/blood , Aged , Biomarkers/blood , Phosphorylation , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Middle Aged , Amyloid beta-Peptides/blood , Amyloid beta-Peptides/cerebrospinal fluid
4.
IEEE J Biomed Health Inform ; 28(6): 3422-3433, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38635390

ABSTRACT

The identification of EEG biomarkers to discriminate Subjective Cognitive Decline (SCD) from Mild Cognitive Impairment (MCI) conditions is a complex task which requires great clinical effort and expertise. We exploit the self-attention component of the Transformer architecture to obtain physiological explanations of the model's decisions in the discrimination of 56 SCD and 45 MCI patients using resting-state EEG. Specifically, an interpretability workflow leveraging attention scores and time-frequency analysis of EEG epochs through Continuous Wavelet Transform is proposed. In the classification framework, models are trained and validated with 5-fold cross-validation and evaluated on a test set obtained by selecting 20% of the total subjects. Ablation studies and hyperparameter tuning tests are conducted to identify the optimal model configuration. Results show that the best performing model, which achieves acceptable results both on epochs' and patients' classification, is capable of finding specific EEG patterns that highlight changes in the brain activity between the two conditions. We demonstrate the potential of attention weights as tools to guide experts in understanding which disease-relevant EEG features could be discriminative of SCD and MCI.


Subject(s)
Cognitive Dysfunction , Electroencephalography , Humans , Electroencephalography/methods , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnosis , Male , Female , Aged , Signal Processing, Computer-Assisted , Middle Aged , Brain/physiopathology , Brain/physiology , Wavelet Analysis , Attention/physiology , Algorithms
5.
Alzheimers Dement ; 20(5): 3525-3542, 2024 05.
Article in Italian | MEDLINE | ID: mdl-38623902

ABSTRACT

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Subject(s)
C9orf72 Protein , Cerebrovascular Circulation , Frontotemporal Dementia , Magnetic Resonance Imaging , tau Proteins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Female , Male , Middle Aged , Longitudinal Studies , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/genetics , C9orf72 Protein/genetics , tau Proteins/genetics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Progranulins/genetics , Biomarkers , Disease Progression , Brain/diagnostic imaging , Heterozygote , Mutation , Aged , Spin Labels , Adult
6.
Alzheimers Dement (Amst) ; 16(2): e12571, 2024.
Article in English | MEDLINE | ID: mdl-38623386

ABSTRACT

INTRODUCTION: We aimed to expand the range of the frontotemporal dementia (FTD) phenotypes assessed by the Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains (CDR plus NACC FTLD). METHODS: Neuropsychiatric and motor domains were added to the standard CDR plus NACC FTLD generating a new CDR plus NACC FTLD-NM scale. This was assessed in 522 mutation carriers and 310 mutation-negative controls from the Genetic Frontotemporal dementia Initiative (GENFI). RESULTS: The new scale led to higher global severity scores than the CDR plus NACC FTLD: 1.4% of participants were now considered prodromal rather than asymptomatic, while 1.3% were now considered symptomatic rather than asymptomatic or prodromal. No participants with a clinical diagnosis of an FTD spectrum disorder were classified as asymptomatic using the new scales. DISCUSSION: Adding new domains to the CDR plus NACC FTLD leads to a scale that encompasses the wider phenotypic spectrum of FTD with further work needed to validate its use more widely. Highlights: The new Clinical Dementia Rating Dementia Staging Instrument plus National Alzheimer's Coordinating Center Behavior and Language Domains neuropsychiatric and motor (CDR plus NACC FTLD-NM) rating scale was significantly positively correlated with the original CDR plus NACC FTLD and negatively correlated with the FTD Rating Scale (FRS).No participants with a clinical diagnosis in the frontotemporal dementia spectrum were classified as asymptomatic with the new CDR plus NACC FTLD-NM rating scale.Individuals had higher global severity scores with the addition of the neuropsychiatric and motor domains.A receiver operating characteristic analysis of symptomatic diagnosis showed nominally higher areas under the curve for the new scales.

7.
J Neurol Sci ; 460: 122998, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38615405

ABSTRACT

Mixed primary progressive aphasia (mPPA) accounts for a substantial proportion of primary progressive aphasia (PPA) cases. However, the lack of a standardised definition of this condition has resulted in misclassification of PPA cases. In this study, we enrolled 55 patients diagnosed with PPA, comprising 12 semantic variant (svPPA), 23 logopenic variant (lvPPA), and 20 mPPA cases with linguistic characteristics consistent with both svPPA and lvPPA (s/lvPPA). All patients underwent language assessments, evaluation of Alzheimer's disease biomarkers (via cerebrospinal fluid analysis or Amyloid-PET), and 18F-FDG-PET brain scans. An agglomerative hierarchical clustering (AHC) analysis based on linguistic characteristics revealed two distinct clusters within the s/lvPPA group: cluster k1 (n = 10) displayed an AD-like biomarker profile, with lower levels of Aß42 and Aß42/Aß40 ratio, along with higher levels of t-tau and p-tau compared to cluster k2 (n = 10). Interestingly, k1 exhibited linguistic features that were similar to those of svPPA. Both clusters exhibited extensive temporoparietal hypometabolism. These findings support the hypothesis that a subgroup of s/lvPPA may represent a clinical manifestation of AD-related PPA.


Subject(s)
Aphasia, Primary Progressive , Biomarkers , Brain , Positron-Emission Tomography , tau Proteins , Humans , Aphasia, Primary Progressive/diagnostic imaging , Aphasia, Primary Progressive/metabolism , Aphasia, Primary Progressive/cerebrospinal fluid , Female , Male , Aged , Biomarkers/cerebrospinal fluid , Middle Aged , Brain/diagnostic imaging , Brain/metabolism , tau Proteins/cerebrospinal fluid , tau Proteins/metabolism , Amyloid beta-Peptides/cerebrospinal fluid , Amyloid beta-Peptides/metabolism , Fluorodeoxyglucose F18 , Semantics
8.
Front Endocrinol (Lausanne) ; 15: 1375302, 2024.
Article in English | MEDLINE | ID: mdl-38654932

ABSTRACT

Background: Plasma biomarkers are preferable to invasive and expensive diagnostic tools, such as neuroimaging and lumbar puncture that are gold standard in the clinical management of Alzheimer's Disease (AD). Here, we investigated plasma Glial Fibrillary Acidic Protein (GFAP), Neurofilament Light Chain (NfL) and Phosphorylated-tau-181 (pTau 181) in AD and in its early stages: Subjective cognitive decline (SCD) and Mild cognitive impairment (MCI). Material and methods: This study included 152 patients (42 SCD, 74 MCI and 36 AD). All patients underwent comprehensive clinical and neurological assessment. Blood samples were collected for Apolipoprotein E (APOE) genotyping and plasma biomarker (GFAP, NfL, and pTau 181) measurements. Forty-three patients (7 SCD, 27 MCI, and 9 AD) underwent a follow-up (FU) visit after 2 years, and a second plasma sample was collected. Plasma biomarker levels were detected using the Simoa SR-X technology (Quanterix Corp.). Statistical analysis was performed using SPSS software version 28 (IBM SPSS Statistics). Statistical significance was set at p < 0.05. Results: GFAP, NfL and pTau 181 levels in plasma were lower in SCD and MCI than in AD patients. In particular, plasma GFAP levels were statistically significant different between SCD and AD (p=0.003), and between MCI and AD (p=0.032). Plasma NfL was different in SCD vs MCI (p=0.026), SCD vs AD (p<0.001), SCD vs AD FU (p<0.001), SCD FU vs AD (p=0.033), SCD FU vs AD FU (p=0.011), MCI vs AD (p=0.002), MCI FU vs AD (p=0.003), MCI FU vs AD FU (p=0.003) and MCI vs AD FU (p=0.003). Plasma pTau 181 concentration was significantly different between SCD and AD (p=0.001), MCI and AD (p=0.026), MCI FU and AD (p=0.020). In APOE ϵ4 carriers, a statistically significant increase in plasma NfL (p<0.001) and pTau 181 levels was found (p=0.014). Moreover, an association emerged between age at disease onset and plasma GFAP (p = 0.021) and pTau181 (p < 0.001) levels. Discussion and conclusions: Plasma GFAP, NfL and pTau 181 are promising biomarkers in the diagnosis of the prodromic stages and prognosis of dementia.


Subject(s)
Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Glial Fibrillary Acidic Protein , Neurofilament Proteins , tau Proteins , Humans , Glial Fibrillary Acidic Protein/blood , Female , Male , Neurofilament Proteins/blood , tau Proteins/blood , Aged , Biomarkers/blood , Cognitive Dysfunction/blood , Cognitive Dysfunction/diagnosis , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Middle Aged , Phosphorylation , Dementia/blood , Dementia/diagnosis , Apolipoproteins E/blood , Apolipoproteins E/genetics , Aged, 80 and over , Follow-Up Studies
9.
Alzheimers Res Ther ; 16(1): 49, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38448894

ABSTRACT

BACKGROUND: Primary progressive aphasia (PPA) diagnostic criteria underestimate the complex presentation of semantic (sv) and logopenic (lv) variants, in which symptoms partially overlap, and mixed clinical presentation (mixed-PPA) and heterogenous profile (lvPPA +) are frequent. Conceptualization of similarities and differences of these clinical conditions is still scarce. METHODS: Lexical, semantic, phonological, and working memory errors from nine language tasks of sixty-seven PPA were analyzed using Profile Analysis based on Multidimensional Scaling, which allowed us to create a distributed representation of patients' linguistic performance in a shared space. Patients had been studied with [18F] FDG-PET. Correlations were performed between metabolic and behavioral data. RESULTS: Patients' profiles were distributed across a continuum. All PPA, but two, presented a lexical retrieval impairment, in terms of reduced production of verbs and nouns. svPPA patients occupied a fairly clumped space along the continuum, showing a preponderant semantic deficit, which correlated to fusiform gyrus hypometabolism, while only few presented working memory deficits. Adjacently, lvPPA + presented a semantic impairment combined with phonological deficits, which correlated with metabolism in the anterior fusiform gyrus and posterior middle temporal gyrus. Starting from the shared phonological deficit side, a large portion of the space was occupied by all lvPPA, showing a combination of phonological, lexical, and working memory deficits, with the latter correlating with posterior temporo-parietal hypometabolism. Mixed PPA did not show unique profile, distributing across the space. DISCUSSION: Different clinical PPA entities exist but overlaps are frequent. Identifying shared and unique clinical markers is critical for research and clinical practice. Further research is needed to identify the role of genetic and pathological factors in such distribution, including also higher sample size of less represented groups.


Subject(s)
Aphasia, Primary Progressive , Semantics , Humans , Multidimensional Scaling Analysis , Linguistics , Fluorodeoxyglucose F18 , Memory Disorders , Aphasia, Primary Progressive/diagnostic imaging
11.
Cortex ; 172: 125-140, 2024 03.
Article in English | MEDLINE | ID: mdl-38301390

ABSTRACT

Little is known about empathy changes from the early stages of Alzheimer's Disease (AD) continuum. The aim of this study is to investigate empathy across AD spectrum from Subjective Cognitive Decline (SCD) to Mild Cognitive Impairment (MCI) and AD dementia (AD-d). Forty-five SCD, 83 MCI and 80 AD-d patients were included. Empathy was assessed by Interpersonal Reactivity Index (IRI) (Perspective Taking - PT, Fantasy - FT, Empathic Concern - EC, and Personal Distress - PD), rated by caregivers before (T0) and after (T1) cognitive symptoms' onset. IRI was also administered to SCD patients to have a self-reported empathy evaluation. Facial emotion recognition was assessed by Ekman-60 Faces Test. Twenty-two SCD, 54 MCI and 62 AD-d patients underwent CSF biomarkers analysis and were classified as carriers of AD pathology (AP+) when they were A+/T+ (regardless of N), or non-carriers (AP-) when they were A- (regardless of T and N), or A+/T-/N-, or A+/T-/N+ according to the A/T(N) system. Cerebral FDG-PET SPM analysis was used to explore neural correlates underlying empathy deficits. PD scores significantly increased from T0 to T1 in SCD, MCI and AD-d (p < .001), while PT scores decreased in MCI and in AD-d (p < .001). SCD AP+ showed a greater increase in PD scores over time (ΔPD T0 - T1) than SCD AP- (p < .001). SCD self-reported PT scores were lower than those of general Italian population (14.94 ± 3.94, 95% C.I. [13.68-16.20] vs 17.70 ± 4.36, 95% C.I. [17.30-18.10]). In AD continuum (SCD AP+, MCI AP+, AD-d), a positive correlation was detected between PT-T1 and brain metabolism in left posterior cingulate gyrus, precuneus and right frontal gyri; a negative correlation was found between ΔPT and brain metabolism in bilateral posterior cingulate gyri. PT may be subtly involved since the preclinical phase of AD. Changes over time of PD are influenced by the underlying Alzheimer's pathology and could potentially serve as an early AD neuropsychological marker.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/psychology , Empathy , Cognitive Dysfunction/psychology , Biomarkers
12.
J Alzheimers Dis Rep ; 8(1): 281-288, 2024.
Article in English | MEDLINE | ID: mdl-38405347

ABSTRACT

Amyloid-ß deposition is the pathological hallmark of both cerebral amyloid angiopathy and Alzheimer's disease dementia, clinical conditions that can share cognitive decline and positive Amyloid-PET scan. A case is reported involving an 82-year-old Italian female who presented initially a memory deficit, later transient focal neurologic episodes, and finally two symptomatic lobar intracerebral hemorrhages. In light of these events, MRI and PET imaging findings, acquired before cerebral hemorrhages, are reconsidered and discussed, highlighting the utility of Amyloid-PET in supporting an in vivo diagnosis of cerebral amyloid angiopathy.

13.
Alzheimers Dement (Amst) ; 16(1): e12526, 2024.
Article in English | MEDLINE | ID: mdl-38371358

ABSTRACT

INTRODUCTION: Early identification of Alzheimer's disease (AD) is necessary for a timely onset of therapeutic care. However, cortical structural alterations associated with AD are difficult to discern. METHODS: We developed a cortical model of AD-related neurodegeneration accounting for slowing of local dynamics and global connectivity degradation. In a monocentric study we collected electroencephalography (EEG) recordings at rest from participants in healthy (HC, n = 17), subjective cognitive decline (SCD, n = 58), and mild cognitive impairment (MCI, n = 44) conditions. For each patient, we estimated neurodegeneration model parameters based on individual EEG recordings. RESULTS: Our model outperformed standard EEG analysis not only in discriminating between HC and MCI conditions (F1 score 0.95 vs 0.75) but also in identifying SCD patients with biological hallmarks of AD in the cerebrospinal fluid (recall 0.87 vs 0.50). DISCUSSION: Personalized models could (1) support classification of MCI, (2) assess the presence of AD pathology, and (3) estimate the risk of cognitive decline progression, based only on economical and non-invasive EEG recordings. Highlights: Personalized cortical model estimating structural alterations from EEG recordings.Discrimination of Mild Cognitive Impairment (MCI) and Healthy (HC) subjects (95%)Prediction of biological markers of Alzheimer's in Subjective Decline (SCD) Subjects (87%)Transition correctly predicted for 3/3 subjects that converted from SCD to MCI after 1y.

14.
Alzheimers Res Ther ; 16(1): 10, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38216961

ABSTRACT

BACKGROUND: The Genetic Frontotemporal Initiative Staging Group has proposed clinical criteria for the diagnosis of prodromal frontotemporal dementia (FTD), termed mild cognitive and/or behavioral and/or motor impairment (MCBMI). The objective of the study was to validate the proposed research criteria for MCBMI-FTD in a cohort of genetically confirmed FTD cases against healthy controls. METHODS: A total of 398 participants were enrolled, 117 of whom were carriers of an FTD pathogenic variant with mild clinical symptoms, while 281 were non-carrier family members (healthy controls (HC)). A subgroup of patients underwent blood neurofilament light (NfL) levels and anterior cingulate atrophy assessment. RESULTS: The core clinical criteria correctly classified MCBMI vs HC with an AUC of 0.79 (p < 0.001), while the addition of either blood NfL or anterior cingulate atrophy significantly increased the AUC to 0.84 and 0.82, respectively (p < 0.001). The addition of both markers further increased the AUC to 0.90 (p < 0.001). CONCLUSIONS: The proposed MCBMI criteria showed very good classification accuracy for identifying the prodromal stage of FTD.


Subject(s)
Frontotemporal Dementia , Humans , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Neurofilament Proteins , Biomarkers , Atrophy
15.
Article in English | MEDLINE | ID: mdl-38253362

ABSTRACT

BACKGROUND: Blood neurofilament light chain (NfL) is increasingly considered as a key trial biomarker in genetic frontotemporal dementia (gFTD). We aimed to facilitate the use of NfL in gFTD multicentre trials by testing its (1) reliability across labs; (2) reliability to stratify gFTD disease stages; (3) comparability between blood matrices and (4) stability across recruiting sites. METHODS: Comparative analysis of blood NfL levels in a large gFTD cohort (GENFI) for (1)-(4), with n=344 samples (n=148 presymptomatic, n=11 converter, n=46 symptomatic subjects, with mutations in C9orf72, GRN or MAPT; and n=139 within-family controls), each measured in three different international labs by Simoa HD-1 analyzer. RESULTS: NfL revealed an excellent consistency (intraclass correlation coefficient (ICC) 0.964) and high reliability across the three labs (maximal bias (pg/mL) in Bland-Altman analysis: 1.12±1.20). High concordance of NfL across laboratories was moreover reflected by high areas under the curve for discriminating conversion stage against the (non-converting) presymptomatic stage across all three labs. Serum and plasma NfL were largely comparable (ICC 0.967). The robustness of NfL across 13 recruiting sites was demonstrated by a linear mixed effect model. CONCLUSIONS: Our results underline the suitability of blood NfL in gFTD multicentre trials, including cross-lab reliable stratification of the highly trial-relevant conversion stage, matrix comparability and cross-site robustness.

16.
Neurol Sci ; 45(3): 1031-1039, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37723371

ABSTRACT

INTRODUCTION AND AIM: NfL and GFAP are promising blood-based biomarkers for Alzheimer's disease. However, few studies have explored plasma GFAP in the prodromal and preclinical stages of AD. In our cross-sectional study, our aim is to investigate the role of these biomarkers in the earliest stages of AD. MATERIALS AND METHODS: We enrolled 40 patients (11 SCD, 21 MCI, 8 AD dementia). All patients underwent neurological and neuropsychological examinations, analysis of CSF biomarkers (Aß42, Aß42/Aß40, p-tau, t-tau), Apolipoprotein E (APOE) genotype analysis and measurement of plasma GFAP and NfL concentrations. Patients were categorized according to the ATN system as follows: normal AD biomarkers (NB), carriers of non-Alzheimer's pathology (non-AD), prodromal AD, or AD with dementia (AD-D). RESULTS: GFAP was lower in NB compared to prodromal AD (p = 0.003, d = 1.463) and AD-D (p = 0.002, d = 1.695). NfL was lower in NB patients than in AD-D (p = 0.011, d = 1.474). NfL demonstrated fair accuracy (AUC = 0.718) in differentiating between NB and prodromal AD, with a cut-off value of 11.65 pg/mL. GFAP showed excellent accuracy in differentiating NB from prodromal AD (AUC = 0.901) with a cut-off level of 198.13 pg/mL. CONCLUSIONS: GFAP exhibited excellent accuracy in distinguishing patients with normal CSF biomarkers from those with prodromal AD. Our results support the use of this peripheral biomarker for detecting AD in patients with subjective and objective cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/psychology , Amyloid beta-Peptides , Biomarkers , Cognitive Dysfunction/psychology , Cross-Sectional Studies , Glial Fibrillary Acidic Protein , Intermediate Filaments , tau Proteins
17.
Neurol Sci ; 45(3): 1051-1055, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37730935

ABSTRACT

The mutations on microtubule associated protein tau (MAPT) gene manifest clinically with behavioural frontotemporal dementia (FTD), parkinsonism, such as progressive supranuclear palsy and corticobasal degeneration, and rarely with amyotrophic lateral sclerosis (ALS). FTD-parkinsonism and FTD-ALS are clinical overlaps included in the spectrum of MAPT mutation's phenotypes. The mutations on MAPT gene cause the dysfunction of tau protein determining its accumulation in neurofibrillary tangles. Recent data describe frequently the co-occurrence of the aggregation of tau protein and α-synuclein in patients with parkinsonism and Parkinson disease (PD), suggesting an interaction of the two proteins in determining neurodegenerative process. The sporadic description of PD-ALS clinical complex, known as Brait-Fahn-Schwarz disease, supports the hypothesis of common neuropathological pathways between different disorders. Here we report the case of a 54-year-old Italian woman with idiopathic PD later complicated by ALS carrying a novel MAPT variant (Pro494Leu). The variant is characterized by an amino acid substitution and is classified as damaging for MAPT functions. The case supports the hypothesis of tau dysfunction as the basis of multiple neurodegenerative disorders.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Parkinson Disease , Parkinsonian Disorders , Female , Humans , Middle Aged , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , tau Proteins/genetics , Parkinson Disease/genetics , Mutation/genetics , Parkinsonian Disorders/genetics
18.
Neurol Sci ; 45(2): 539-546, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37710144

ABSTRACT

INTRODUCTION: Recent data suggest that the deleterious effect on general health and cognition of ε4 allele of Apolipoprotein E (ApoE) observed in the elderly population, may attenuate in extreme aging. This study aimed to describe the ApoE genotype distribution and its relationship with cognition in a group of nonagenarians living in the Mugello area, Italy. MATERIAL AND METHODS: Cognition was evaluated using the Mini-Mental-State-Examination (MMSE). DNA was extracted from blood samples to determine ApoE genotyping. Participants were classified into three ApoE groups (ε2, ε3, ε4). Logistic and linear regression models were created, to assess the relationship between ApoE genotype group and dementia diagnosis and cognitive performance, respectively. RESULTS: 169 subjects were included. ApoE ε3 was the most prevalent genotype (76.3%). Dementia prevalence was 26.6% and it was not associated with the presence of ApoE ε4. Participants of ε4 group were significantly more likely to have lower cognitive performances than ε2 and ε3, independently of a dementia diagnosis. DISCUSSION: Results support that ApoE genotype no longer plays a role in the health condition of the oldest old, however, an interaction is detectable between ApoE polymorphism and cognitive performances at this extreme age.


Subject(s)
Apolipoproteins E , Dementia , Aged , Aged, 80 and over , Humans , Apolipoprotein E4/genetics , Apolipoproteins E/genetics , Cognition , Genotype , Polymorphism, Genetic/genetics
19.
Eur J Neurol ; 31(1): e16089, 2024 01.
Article in English | MEDLINE | ID: mdl-37797300

ABSTRACT

BACKGROUND AND PURPOSE: We aimed to evaluate the accuracy of plasma neurofilament light chain (NfL) in predicting Alzheimer's disease (AD) and the progression of cognitive decline in patients with subjective cognitive decline (SCD) and mild cognitive impairment (MCI). METHODS: This longitudinal cohort study involved 140 patients (45 with SCD, 73 with MCI, and 22 with AD dementia [AD-D]) who underwent plasma NfL and AD biomarker assessments (cerebrospinal fluid, amyloid positron emission tomography [PET], and 18 F-fluorodeoxyglucose-PET) at baseline. The patients were rated according to the amyloid/tau/neurodegeneration (A/T/N) system and followed up for a mean time of 2.72 ± 0.95 years to detect progression from SCD to MCI and from MCI to AD. Forty-eight patients (19 SCD, 29 MCI) also underwent plasma NfL measurements 2 years after baseline. RESULTS: At baseline, plasma NfL detected patients with biomarker profiles consistent with AD (A+/T+/N+ or A+/T+/N-) with high accuracy (area under the curve [AUC] 0.82). We identified cut-off values of 19.45 pg/mL for SCD and 20.45 pg/mL for MCI. During follow-up, nine SCD patients progressed to MCI (progressive SCD [p-SCD]), and 14 MCI patients developed AD dementia (progressive MCI [p-MCI]). The previously identified cut-off values provided good accuracy in identifying p-SCD (80% [95% confidence interval 65.69: 94.31]). The rate of NfL change was higher in p-MCI (3.52 ± 4.06 pg/mL) compared to non-progressive SCD (0.81 ± 1.25 pg/mL) and non-progressive MCI (-0.13 ± 3.24 pg/mL) patients. A rate of change lower than 1.64 pg/mL per year accurately excluded progression from MCI to AD (AUC 0.954). CONCLUSION: Plasma NfL concentration and change over time may be a reliable, non-invasive tool to detect AD and the progression of cognitive decline at the earliest stages of the disease.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurofilament Proteins , Humans , Alzheimer Disease/diagnosis , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers , Cognitive Dysfunction/blood , Cognitive Dysfunction/metabolism , Cross-Sectional Studies , Disease Progression , Intermediate Filaments , Longitudinal Studies , tau Proteins/cerebrospinal fluid , Neurofilament Proteins/blood , Neurofilament Proteins/chemistry
20.
Front Aging Neurosci ; 15: 1292417, 2023.
Article in English | MEDLINE | ID: mdl-38020757

ABSTRACT

Background: The age-related decrease in reserve and resistance to stressors is recognized as frailty, one of the most significant challenges identified in recent years. Despite a well-acknowledged association of frailty with cognitive impairment, depression, and gray matter morphology, no clear data are available regarding the nature of this relationship. This cross-sectional study aims to disentangle the role of the behavioral, neuropsychological, and neural components as predictors or moderators of frailty. Methods: Ninety-six older adults (mean age = 75.49 ± 6.62) were consecutively enrolled and underwent a clinical and MRI (3 T) evaluation to assess frailty, physical activity, global cognitive level, depression, wellbeing, autonomy in daily living, cortical thickness, and subcortical volumes. Results: Results showed a full mediation of depression on the link between cortical thickness and frailty, while the cognitive level showed no significant mediating role. In particular, left supramarginal thickness had a predicting role on depression, that in turn impacted frailty occurrence. Finally, handgrip weakness was an early key indicator of frailty in this study's cohort. Conclusion: These data substantiate the role of depression in mediating the link between neural integrity of the supramarginal gyrus and frailty. In the complexity of frailty, handgrip weakness seems to be an early key indicator. These results are relevant for the design of rehabilitation interventions aimed at reversing the frail condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...