Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pediatr Rep ; 14(2): 293-311, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35736659

ABSTRACT

Coeliac disease (CD) is frequently underdiagnosed with a consequent heavy burden in terms of morbidity and health care costs. Diagnosis of CD is based on the evaluation of symptoms and anti-transglutaminase antibodies IgA (TGA-IgA) levels, with values above a tenfold increase being the basis of the biopsy-free diagnostic approach suggested by present guidelines. This study showcased the largest screening project for CD carried out to date in school children (n=20,000) aimed at assessing the diagnostic accuracy of minimally invasive finger prick point-of-care tests (POCT) which, combined with conventional celiac serology and the aid of an artificial intelligence-based system, may eliminate the need for intestinal biopsy. Moreover, this study delves deeper into the "coeliac iceberg" in an attempt to identify people with disorders who may benefit from a gluten-free diet, even in the absence of gastrointestinal symptoms, abnormal serology and histology. This was achieved by looking for TGA-IgA mucosal deposits in duodenal biopsy. This large European multidisciplinary health project paves the way to an improved quality of life for patients by reducing the costs for diagnosis due to delayed findings of CD and to offer business opportunities in terms of diagnostic tools and support.

2.
J Back Musculoskelet Rehabil ; 34(6): 915-923, 2021.
Article in English | MEDLINE | ID: mdl-33935067

ABSTRACT

BACKGROUND: Activity monitors have been introduced in the last years to objectively measure physical activity to help physicians in the management of musculoskeletal patients. OBJECTIVE: This systematic review aimed at describing the assessment of physical activity by commercially available portable activity monitors in patients with musculoskeletal disorders. METHODS: PubMed, Embase, PEDro, Web of Science, Scopus and CENTRAL databases were systematically searched from inception to June 11th, 2020. We considered as eligible observational studies with: musculoskeletal patients; physical activity measured by wearable sensors based on inertial measurement units; comparisons performed with other tools; outcomes consisting of number of steps/day, activity/inactivity time, or activity counts/day. RESULTS: Out of 595 records, after removing duplicates, title/abstract and full text screening, 10 articles were included. We noticed a wide heterogeneity in the wearable devices, that resulted to be 10 different types. Patients included suffered from rheumatoid arthritis, osteoarthritis, juvenile idiopathic arthritis, polymyalgia rheumatica, and fibromyalgia. Only 3 studies compared portable activity trackers with objective measurement tools. CONCLUSIONS: Taken together, this systematic review showed that activity monitors might be considered as useful to assess physical activity in patients with musculoskeletal disorders, albeit, to date, the high device heterogeneity and the different algorithms still prevent their standardization.


Subject(s)
Musculoskeletal Diseases , Wearable Electronic Devices , Exercise , Fitness Trackers , Humans , Musculoskeletal Diseases/diagnosis , Reproducibility of Results
3.
Eur J Radiol ; 105: 153-161, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30017273

ABSTRACT

The importance of childhood and adolescence for bone development and mineral accrual is increasingly accepted, leading to a need of suitable methods for monitoring bone health even in pediatric setting. Among the several different imaging methods available for clinical measurement of bone mineral density (BMD) in children, dual-energy X-ray absorptiometry (DXA) is the most widely available and commonly used due to its reproducibility, negligible radiation dose and reliable pediatric reference data. Nevertheless, DXA in children has some technical specific features that should be known by those physicians who interpret and report this examination. We provide recommendations for optimal DXA scan reporting in pediatric setting, including indications, skeletal sites to be examined, parameters to be measured, timing of follow-up BMD measurements. Adequate report and analysis of DXA examinations are essential to prevent over- and underdiagnosis of bone mineral impairment in pediatric patients. In conclusion, a complete and exhaustive DXA report in children and adolescents is mandatory for an accurate diagnosis and a precise monitoring of pediatric bone status.


Subject(s)
Absorptiometry, Photon , Bone Density/physiology , Bone and Bones/physiology , Child Development/physiology , Absorptiometry, Photon/methods , Adolescent , Body Height , Body Weight , Child , Female , Humans , Male , Physical Examination/methods , Practice Guidelines as Topic , Reference Values , Reproducibility of Results , Risk Assessment
4.
IEEE Trans Inf Technol Biomed ; 13(1): 87-93, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19129027

ABSTRACT

Bias artifact corrupts MRIs in such a way that the image is afflicted by illumination variations. Some of the authors proposed the exponential entropy-driven homomorphic unsharp masking ( E(2)D-HUM) algorithm that corrects this artifact without any a priori hypothesis about the tissues or the MRI modality. Moreover, E(2)D-HUM does not care about the body part under examination and does not require any particular training task. People who want to use this algorithm, which is Matlab-based, have to set their own computers in order to execute it. Furthermore, they have to be Matlab-skilled to exploit all the features of the algorithm. In this paper, we propose to make such algorithm available as a service on a grid infrastructure, so that people can use it almost from everywhere, in a pervasive fashion, by means of a suitable user interface running on smartphones. The proposed solution allows physicians to use the E(2)D-HUM algorithm (or any other kind of algorithm, given that it is available as a service on the grid), being it remotely executed somewhere in the grid, and the results are sent back to the user's device. This way, physicians do not need to be aware of how to use Matlab to process their images. The pervasive service provision for medical image enhancement is presented, along with some experimental results obtained using smartphones connected to an existing Globus-based grid infrastructure.


Subject(s)
Algorithms , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Artifacts , Bias , Brain/anatomy & histology , Computers, Handheld , Humans , Knee/anatomy & histology , Pelvis/anatomy & histology , Systems Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...