Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 32(38): 9816-25, 2016 09 27.
Article in English | MEDLINE | ID: mdl-27588340

ABSTRACT

The impact of saturation and unsaturation in the fatty acyl hydrocarbon chain on the physicochemical properties of nanostructured lipid carriers (NLCs) was investigated to develop novel delivery systems loaded with an anticancer drug, ursolic acid (UA). Aqueous NLC dispersions were prepared by a high-pressure homogenization-ultrasonication technique with Tween 80 as a stabilizer. Mutual miscibility of the components at the air-water interface was assessed by surface pressure-area measurements, where attractive interactions were recorded between the lipid mixtures and UA, irrespective of the extent of saturation or unsaturation in fatty acyl chains. NLCs were characterized by combined dynamic light scattering, transmission electron microscopy (TEM), atomic force microscopy (AFM), differential scanning calorimetry, drug encapsulation efficiency, drug payload, in vitro drug release, and in vitro cytotoxicity studies. The saturated lipid-based NLCs were larger than unsaturated lipids. TEM and AFM images revealed the spherical and smooth surface morphology of NLCs. The encapsulation efficiency and drug payload were higher for unsaturated lipid blends. In vitro release studies indicate that the nature of the lipid matrix affects both the rate and release pattern. All UA-loaded formulations exhibited superior anticancer activity compared to that of free UA against human leukemic cell line K562 and melanoma cell line B16.


Subject(s)
Antineoplastic Agents/pharmacology , Lipids/chemistry , Nanostructures , Triterpenes/chemistry , Calorimetry, Differential Scanning , Cell Line, Tumor , Humans , Ursolic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...