Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 40(4): 896-903, 2001 Jan 30.
Article in English | MEDLINE | ID: mdl-11170410

ABSTRACT

Calmodulin (CaM) is a small acidic protein essential to calcium-mediated signal transduction. Conformational change driven by calcium binding controls its selective activation of myriad target proteins. In most well characterized cases, both homologous domains of CaM interact with a target protein. However, physiologically separable roles for the two domains were demonstrated by mutants of Paramecium tetraurelia [Kung, C. et al. (1992) Cell Calcium 13, 413], some of which have altered calcium affinities [Jaren, O. R. et al. (2000) Biochemistry 39, 6881]. To determine whether these mutants can associate with canonical targets in a calcium-dependent manner, their ability to bind melittin was assessed using analytical gel permeation chromatography, analytical ultracentrifugation, and fluorescence spectroscopy. The Stokes radius of wild-type PCaM and 11 of the mutants decreased dramatically upon binding melittin in the presence of calcium. Fluorescence spectra and sedimentation velocity studies showed that melittin bound to wild-type PCaM and mutants in a calcium-independent manner. However, there were domain-specific perturbations. Mutations in the N-domain of PCaM did not affect the spectrum of melittin (residue W19) under apo or calcium-saturated conditions, whereas most of the mutations in the C-domain did. These data are consistent with a calcium-dependent model of sequential target association whereby melittin (i) binds to the C-domain of PCaM in the absence of calcium, (ii) remains associated with the C-domain upon calcium binding to sites III and IV, and (iii) subsequently binds to the N-domain upon calcium binding to sites I and II of CaM, causing tertiary collapse.


Subject(s)
Calcium/physiology , Calmodulin/deficiency , Calmodulin/genetics , Ion Channels/deficiency , Ion Channels/genetics , Melitten/metabolism , Mutation , Paramecium/genetics , Amino Acid Sequence , Animals , Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Chromatography, Gel , Ion Channels/metabolism , Melitten/chemistry , Models, Molecular , Molecular Sequence Data , Paramecium/metabolism , Protein Binding/genetics , Protein Structure, Tertiary/genetics , Spectrometry, Fluorescence , Tryptophan/chemistry , Ultracentrifugation
2.
Methods Enzymol ; 323: 254-301, 2000.
Article in English | MEDLINE | ID: mdl-10944756

ABSTRACT

To dissect the chemical basis for interactions controlling regulatory properties of macromolecular assemblies, it is essential to explore experimentally the linkage between ligand binding, conformational change, and subunit assembly. There are many advantages to using techniques that will probe the occupancy of individual binding sites or monitor conformational responses of individual residues, as described here. Proteolytic footprinting titrations may be used to infer binding free energies for ligands interacting with multiple sites or domains and to detect otherwise unrecognized "silent" interdomain interactions. Microgram quantities of pure protein are required, which is low relative to the hundreds of milligrams needed for comparable discontinuous equilibirum titrations monitored by NMR. By running comparative studies with several proteases, it is easy to determine whether resulting titration curves are consistent, independent of the protease used and therefore representative of the structural response of the protein to ligand binding or other differences in solution conditions (pH, salt, temperature). The results from multiple techniques (e.g., NMR, fluorescence, and footprinting) applied to aliquots from the same discontinuous titration may be compared easily to test for consistency. Classic methods for determining thermodynamic and kinetic properties of calcium binding to calmodulin include filter binding and equilibrium or flow dialysis (employing the isotope 45Ca), spectroscopic studies of stopped-flow fluorescence, calorimetry, and direct ion titrations. A cautionary note is that many different sets of microscopic data would be consistent with a single set of macroscopic constants determined by classic methods. This was well illustrated in Fig. 9. Thus, while it is important to compare results with those obtained by classic binding methods, they are, by definition, incapable of resolving the microscopic constants of interest. Thus, there is only one "direction" for comparison. Quantitative proteolytic footprinting titrations applied to studying calmodulin provided the first direct quantitative estimate of negative interactions between domains. Although studies of site-knockout mutants had suggested interactions between domains, this approach gave the first evidence for the pathway of anticooperative interactions between domains by showing that helix B responds structurally to calcium binding to sites III and IV in the C-domain. Despite two decades of study of calmodulin and the application of limited proteolysis studies to the apo and fully saturated forms, this finding emerged only when titration studies were undertaken as described. This highlights the general observation that while the behavior of the intermediate states in a cooperative switch are the key elements of the transition mechanism, they are the most difficult to observe. The unexpected finding that the isolated domains are nearly equivalent in their calcium-binding properties (Fig. 23 B) leaves us with many of the questions we had at the start: How does the sum of two nearly equivalent domains result in a molecule that switches sequentially rather than simultaneously? But it underscores why it is not yet possible to understand similar proteins by sequence gazing alone.


Subject(s)
Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Ligands , Protein Conformation , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , Dimerization , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Nuclear Magnetic Resonance, Biomolecular/methods , Peptide Fragments/chemistry , Protein Structure, Secondary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Thermodynamics , Thrombin/metabolism
3.
Biochemistry ; 37(36): 12496-506, 1998 Sep 08.
Article in English | MEDLINE | ID: mdl-9730822

ABSTRACT

Replication protein A (RPA) is a multisubunit single-stranded DNA-binding (ssDNA) protein that is required for cellular DNA metabolism. RPA homologues have been identified in all eukaryotes examined. All homologues are heterotrimeric complexes with subunits of approximately 70, approximately 32, and approximately 14 kDa. While RPA homologues are evolutionarily conserved, they are not functionally equivalent. To gain a better understanding of the functional differences between RPA homologues, we analyzed the DNA-binding parameters of RPA from human cells and the budding yeast Saccharomyces cerevisiae (hRPA and scRPA, respectively). Both yeast and human RPA bind ssDNA with high affinity and low cooperativity. However, scRPA has a larger occluded binding site (45 nucleotides versus 34 nucleotides) and a higher affinity for oligothymidine than hRPA. Mutant forms of hRPA and scRPA containing the high-affinity DNA-binding domain from the 70-kDa subunit had nearly identical DNA binding properties. In contrast, subcomplexes of the 32- and 14-kDa subunits from both yeast and human RPA had weak ssDNA binding activity. However, the binding constants for the yeast and human subcomplexes were 3 and greater than 6 orders of magnitude lower than those for the RPA heterotrimer, respectively. We conclude that differences in the activity of the 32- and 14-kDa subunits of RPA are responsible for variations in the ssDNA-binding properties of scRPA and hRPA. These data also indicate that hRPA and scRPA have different modes of binding to ssDNA, which may contribute to the functional disparities between the two proteins.


Subject(s)
DNA Replication , DNA, Single-Stranded/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , DNA Helicases/chemistry , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Holoenzymes/chemistry , Holoenzymes/genetics , Humans , Molecular Weight , Peptide Fragments/chemistry , Protein Binding/genetics , Replication Protein A , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Species Specificity
4.
Biochemistry ; 37(12): 4244-53, 1998 Mar 24.
Article in English | MEDLINE | ID: mdl-9521747

ABSTRACT

Calmodulin (CaM) is an essential protein that exerts exquisite spatial and temporal control over diverse eukaryotic processes. Although the two half-molecule domains of CaM each have two EF-hands and bind two calcium ions cooperatively, they have distinct roles in activation of some targets. Interdomain interactions may mediate coordination of their actions. Proteolytic footprinting titrations of CaM [Pedigo and Shea (1995) Biochemistry 34, 1179-1196; Shea, Verhoeven, and Pedigo (1996) Biochemistry 35, 2943-2957] showed that calcium binding to the high-affinity sites (III and IV in the C-domain) alters the conformation of helix B in the N-domain despite sites I and II being vacant. This may arise from calcium-induced disruption of interactions between the apo domains. In this study, comparing the cloned domains (residues 1-75, 76-148) to whole CaM, the proteolytic susceptibility of helix B in the apo isolated N-domain was higher than in apo CaM. The isolated N-domain was monotonically protected by calcium binding and had a higher calcium affinity than when part of whole CaM. The change in affinity was small (1-1.5 kcal/mol) but acted to separate the domain saturation curves of whole CaM. Unfolding enthalpies and melting temperatures of the apo isolated domains did not correspond to the two transitions resolved for apo CaM. In summary, the interactions between domains of apo CaM protected the N-domain from proteolysis and raised its Tm by 10 degrees C, demonstrating that CaM is not the sum of its parts.


Subject(s)
Calcium/metabolism , Calmodulin/metabolism , Amino Acid Sequence , Animals , Apolipoproteins/metabolism , Calmodulin/isolation & purification , Chromatography, Gel , Circular Dichroism , Hydrolysis , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Spectrometry, Fluorescence , Thrombin , Tyrosine/metabolism , Ultracentrifugation
5.
Biophys J ; 71(6): 3407-20, 1996 Dec.
Article in English | MEDLINE | ID: mdl-8968610

ABSTRACT

Calmodulin (CaM) is an intracellular cooperative calcium-binding protein essential for activating many diverse target proteins. Biophysical studies of the calcium-induced conformational changes of CaM disagree on the structure of the linker between domains and possible orientations of the domains. Molecular dynamics studies have predicted that Ca4(2+)CaM is in equilibrium between an extended and compact conformation and that Arg74 and Arg90 are critical to the compaction process. In this study gel permeation chromatography was used to resolve calcium-induced changes in the hydrated shape of CaM at pH 7.4 and 5.6. Results showed that mutation of Arg 74 to Ala increases the R(s) as predicted; however, the average separation of domains in Ca4(2+)-CaM was larger than predicted by molecular dynamics. Mutation of Arg90 to Ala or Gly affected the dimensions of apo-CaM more than those of Ca4(2+)-CaM. Calcium binding to CaM and mutants (R74A-CaM, R90A-CaM, and R90G-CaM) lowered the Stokes radius (R(s)). Differences between R(s) values reported here and Rg values determined by small-angle x-ray scattering studies illustrate the importance of using multiple techniques to explore the solution properties of a flexible protein such as CaM.


Subject(s)
Calcium/metabolism , Calmodulin/chemistry , Calmodulin/metabolism , Protein Conformation , Amino Acid Sequence , Animals , Base Sequence , Binding Sites , DNA Primers , Hydrogen-Ion Concentration , Models, Structural , Molecular Sequence Data , Mutagenesis, Site-Directed , Point Mutation , Protein Binding , Protein Structure, Secondary , Rats , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...