Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Chem B ; 107(38): 10598-602, 2003 Sep 25.
Article in English | MEDLINE | ID: mdl-26317446

ABSTRACT

Atomic-level studies involving an electrochemical scanning tunneling microscope (EC-STM) flow-cell are presented. Multiple electrochemical atomic layer epitaxy (EC-ALE) cycles of CdTe formation were observed. For a binary compound (i.e., CdTe), an EC-ALE cycle involves exposure of the substrate to a solution of the first precursor (CdSO4), followed by exposure to the second precursor (TeO2), while maintaining potential control. Interleaving blank rinses may also be used, but were omitted in the present studies. To allow the exchange of solutions, the EC-STM cell was modified to allow solution exchange via a single peristaltic pump. A selection valve was used to choose the solution to be introduced into the cell. There is evidence that the growth of the initial layer of CdTe on Au(111), the (√7 × âˆš7)-CdTe monolayer, can be improved in homogeneity and morphology by repeatedly depositing and stripping the Cd atomic layer. Therefore, a new starting cycle, which should improve the quality of deposits formed via EC-ALE, has been developed.

2.
J Am Chem Soc ; 124(25): 7604-9, 2002 Jun 26.
Article in English | MEDLINE | ID: mdl-12071770

ABSTRACT

Half-metallic ferrimagnetic materials such as Fe(3)O(4) are of interest for use in spintronic devices. These devices exploit both the spin and charge of an electron in spin-dependent charge transport. Epitaxial thin films of Fe(3)O(4) have been grown on the three low-index planes of gold by electrodeposition. On Au(110), a [110] Fe(3)O(4) orientation that is aligned with the underlying Au(110) substrate is observed. Thin films on Au(100) grow with three different orientations: [100], [111], and [511]. On Au(111), both [111] and [511] orientations of Fe(3)O(4) are observed. The [511] orientations are the result of twinning on [111] planes. A polarization value of approximately -40% at the Fermi level was measured by spin-polarized photoemission at room temperature for a thin film on Au(111).

SELECTION OF CITATIONS
SEARCH DETAIL